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MATHEMATICAL MODELING

DAMPED STRUCTURE DESIGN USING FINITE ELEMENT ANALYSIS

Matthew F. Kluesener

and

Michael L. Drake
University of Dayton Research Institute

Dayton, Ohio 45469

As the performance requirements and the life cycle costs for
jet engines and aircraft increase the need for functional
high cycle fatigue (HCF) control is evident. The purpose of
this paper is to present the methodology of using finite ele-
ment analysis to evaluate viscoelastic damping treatments for
HCF control. Steps for analyzing passive damping treatments
are presented. Design criteria used to evaluate the damping
applications, as well as two methods of calculating the
structural loss factor are discussed. The results from anal-
yses of a stiffened panel and turbine blade are also present-
ed.

INTRODUITION materials. Viscoelastic damping mate-
rials in the form of free layer and con-

As the performance requirements and strained layer damping treatments (some-
the life cycle costs for jot engines times called passive damping) to in-
and aircraft fuselage increase, the crease the damping in structures have
need for functional high cycle fatigue been used for sometime [1,2,3) Figure I
(11CF) control is evident. A major con- shows the types of damping treatments.
cern in jet engines is the HCF failure
of turbine blades. Blade failures In recent year, vibration damping
cause frequent maintenance overhauls technology has been successfully applied
resulting in high life cycle costs. to numerous structures to control reso-
Another concern is the reliability of nant vibration at both high and low tom-
these components under war time condi- peraturos 14,5,61.
tions, where the operation time would
be greatly increased and the operation.. Most applications of damping treat-
al environment would be more severe. monte on strictures to date have been
Blade redesign efforts have proven "fixes" for existing vibration problems.
somewhat effective: however, they are A more prudent approach is to consider
extremely expensive and often result in passive damping in the initial design
performance losses. Likewise, the do- stage. This requires sophisticated

-siqn of aircraft fuselage structures is structural analysis programs to verify
often governed by sonic fatigue, In conceptual designs reducing the number
those cases, high sound pressure levels of prototypes that need to be construct-
cause the atructure to vibrate at its ad. A finite element program which can
natural frequencies, resulting in Very predict the response of damped strue-
high resonant strossof which cause itCF tueas has been developed which meets
problems. Current design methods to this need 17,8). The purpose of this
reduce the high stresses include pa r is to prevent the methodology of
strongth'ning the structures or do- using this finite element analyin
creasing frame and stringer spacing, approach to evaluate viscoclastic damp-
rosultilu! in weight penalties effecting ig treatments for high cycle fatigue
aircralt perfornance. control. The reaultv of analyses on a

skin stringer panel and a high tempera-
A weight efficient mothod to reduce ture turbine blade will aluo be present-

aCE in to dissipate vibratory energy od.
through the use of viStoolastic damping



DAMPING MATERIAL-- response involves several steps (also
DAPNG TERA-see Figure 2);

STRUCTURE ( ) The first step is to determine
the natural frequencies and mode shapes

FREE LAYER, COATED ONE SIDE of the undamped structure. Once the
natural frequencies are established, the
mode or modes of interest in the fre-
quency band of excitation can be chosen.

DAMPING Since the loss factor and modulus of the
MATERIAL damping material are frequency and tem-

perature dependent, the natuial fre-
quency is needed to select the proper-

STRUCTURE ties of the damping material. It is al-
Iso important at this time to establish

the temperature range over which damage
or high cycle fatigue is likely to oc-

FREE LAYER, COATED ON TWO SIDES cur. Note that this temperature range
most probably will be narrower than the

DAMPING broad temperature range that tha com-
MATERIAL~u -- CONSTRAINING LAYER ponent will see.

An alternative to determining the
properties of the damping material based
on temperature and frequency at this0I

STRUCTURE point, is to choose a typical value of
modulus and loss factor of a material

CONSTRAINED LAYER where it has peak damping. It then be-
comes necessary to find a material that

Fig. - Types of Viscoelastic Damping has these properties at the required
Treatments. temperature and frequency.

APPROACH TO DAMPING DESIGN BY FINITE (2) The second step in the analy-
ELEMENT METHOD sis procedure is to do a forced hurmonic

response of the undamped structure.
When considering passive damping iii This L dona by applying a vibrating or

the initial design process, the analysis harmonic load to the structure. The
can be used to evaluate the design con- load can be applied at the natural ire-
cepts by one of several criteria. In quency of interest from which displace-
the case of a fatigue problem, the cri- ment and/or stress is calculated. Al-
teria may be a maximum stress level dur- torn*tively, the load can be applied at
ing resonai.ce. However, in the design discrete frequoncies in a small band-
of a structuro requi'ing small vibration width about the natural frequency,.to
levels, another criteria may be a ve- yield an amplitude versus frequency re-
quired maximum displacentent at. reso- slonso plot (tecoptance plot). From.
nance. Both criteria are bsed on the tli, rep onse plot tho structural damp-
fact that damping lmits the response iflq can be determined by the half-power
during reaonance. Both criteria follow bandwidth method. A small amount of
the sam basic step in the analysis, damping is included in the base struc-

ture to simulate the actual inherent
In the past, constrained layer structural dampinq and to keep the ro-

damping treatmnts appled to a st0u sponco at the natural 'requeney from teo-
.turo usuully.consioted of. a thin layt coming infinite. It should be noted
of self-adhesive damping tnatorial cover- that the da.tlnq deterined from the ro-
ad by a thin layer of motal faoil itho sponse plot will b thb same am the in-
const ining layer). In the Initial do- herent damping spectied, and the step
sign stage, it is poiisiblo And advanta- my be deleted, The reason the dampin-

0* qoous to desiqn the structure as A eeo- will W the scafo an the inherent damp-
positir (andwich) conmistinq of equal- inqt, can be sen by refertnln to the
thioknees of metal serving aa the equation for systm loss factor by the
base layer And constraining ln'er, bond- Strain Enorgy Mothod In Viguro 3. 'Par
od toethoer with danpin9 er.ial, the. undatWd cee with a small aaount of.
this wouhl be the saon al the dampe inherent dampinq, e\ -... (i (where
sheet stoel which is 4o0moreially avail- - Is the loss ctr ior the ith @o-
chic. tmont). and r"4 wil Itherefore be the loss

faetor t ikied for the "tmerial, Thut,
Our approach to evaluating! the. of- the ronjsein asid stros lovl aro dotor-

fect of A damping treatwat on the mined during resonanoe for Oe. undzwipod



case, giving a reference by which to ent, because the modulus of the damping
measure the effect of the damping treat- material will be different at the new
ment. temperature. Although the damping mate-

rial is temperature and frequency depen-
(3) The third step is to determine dent, it is not as dependent on fre-

the natural frequencies of the damped quency as it is on temperature. There-
structure. The natural frequencies of fore, a close approximation of the natu-
the damped structure are going to differ ral frequency at the new temperature
from the undamped structure because the should be adequate.
damping material and constraining layer
change the section properties of the _

structure, thereby changing its natural DETERMINE NATURAL FRE-frequencies. This is especially true if STEP I QUENCIES AND MODE SHAPES
the damped structure is a sandwich com- OF UNDAMPED STRUCTURE
posite where damping material is sand-
wiched between two metal layers that are
each one-half the thickness of the un- Select proper-
damped structure. It should be noted ties of damping
that the loss factor or damping ratio of materia.
the damping material does not enter into
the natural frequency calculation. That
is, the natural frequency determined is FORCED RESPONSE, DETERMINE
not the damped natural frequency. The STEP 2 STRESS AND/OR DISPLACEMENT
natural frequency is based solely on the OF UNDAMPED STRUCTURE
geometry of the layers and the stiffness
or modulus of the materials.

(4) Thle fourth step is to do a{
forced harmonic response of the damped
etructure. The same harmonic loading as "N
in stop (2) is again applied to the DE TURL FR-

structure. The loss factor of the mate- STEP3 I QUENCIES AND MODE SHAPES

rial does enter into the calculations in 1 OF DAMPED STRUCTURE
this stop. The increased damping in
the structure shifts the damped resonant
frequency slightly hiqgor than tile un-
damped resonant frequency. Usually the
shift is small, on the order of one per-
cent or loss. Tile oXact resonant fro- POliCED RESPONSE, DETER-
quoncy for the damped structure is do- - MIN .TFS ANDAO 018-
teiftlnd by orforming the forced her-- STP 4 I 3TlO8 lM- 0-
olic response analysis at discrete ro- STRUMO• '

quenctes in tile noighborhood of the ex- -.

pactoe natural frequency, and notinq Cpare reult v
that frequency which yoilds the max num of step a to
displacaeant for a specific point on the step 4
Structure. Onco the damped natural Ire-
quancy is determined, a foreed .rsponga [DTRiE LOSS AtO OP
analysis at the domped natural frequency. DATERMIU SS h

*is perforfted to determine the stressesST3 Sotn UMwn D OALnTn R 9V AIN
at the damped resoatce. atOWjENR# BANWTHO R MAI

With this infortation, tho do.iqur
can now compare the dar.Tod structure to
the undampad strutture on the basis of
stress or digpllace-tient, depending on rig g teps to Rvaluato D'Aosping
which oritoriA was selected. if u e troatuct by vini.t lecse
damped structure ett tho de .n r1- Analyis.

dtit.rmino tho lotu factor or strott in
.. theo tructurt during togo~iioj 'at dif-

ing varies %vsuS tomparature. "e pro-. ortiot of the dmpinq tuterial are do-

dotim4 tion of the fidw frtellu, and

stoj (3) nd (4) above are repated.
.11e freq1uencY (k the* dartd structure
at the new toewrattre gill be diffor-

Si



When analyzing a complex structure
_7_xS 1, SE,- SE,-such as an aircraft fuselage, it is im-

-sE practical to model the whole fuselage or--_-I even a sub-section of the fuselage. The
number of nodes and elements necessary

STR.AI% ENNF1&V HOD for accurate dynamic predictions would
be enormous. Therefore, a representa-
tive section of the structure is model-
the proper boundary conditions, two of

I the edges can be treated as lines of
-- F /symmetry. The effect of this is to give

the model the same flexibility as if
four sections were modeled (see Figure

L / :5). It does, however, restrict the nat-
ural frequencies that can be extracted

wn to the odd-odd modes such as the 1,1
mode, 1,3 mode, 3,3 mode, 1,5 mode, etc.
Other symmetry conditions would yield

FROU1SC even-even or even-odd modes (see Figure
HALF PN\FR BANM 'I01H METHOD0 6).

Fig. 3 - Determination of System Loss
Factor.

The fifth and last step in the
analysis is optional. If the system
loss factor for the damped structure is
desired, it can be calculated in two
ways. The first method is to do a
forced vibration analysis at discrete
frequencies about the natural frequency
and the plot the response amplitude ver-
sus frequency. Note that part of this
was already done in order to determine
the damped natural frequency. The loss
factor is then determined by the half-
power bandwidth method, as shown in
Figure 3. The second approach is to use
:the strain energy method. In the strain
energy method the loss factor is deter-

." miaed as the ratio of the energy dissi-
-pated to the total strain energy stored.
The energy dissipated is equal to the
sum over ali the elements ot the loss
factor of each element times the strain Fig. 4 - Finite Element Model of Stiff-
energy stored in each element (see Fig- ened Panel.
ure 3).

*'ATo recent projects on which damp-
ing treatments were analyzed will be
presented in the following sections as SUPPORTED
examples of using this methodology. EDGES

EXiA4PLES OF DAMPED STRUCTURE DESIGN

Damped Skin Stringer Panel k
The purpose of the investigation of I

a skin stringer structure was to lower
the stresses in the resonant condition I
by the use of viscoelastic constrained
layer damping. The method and analysis "k
arc not limited to aircraft fuselage SYMMETRIC-SYMMLTRIC ,
structures, but are also representative BOUNDARY CONDITIONS
of a:.y general class of structures con-
sisting of stiffened skins or panels. rig, 5 - Boundary Conditions.

4
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The constraining layer and panel were
modeled with thin-shell elements. The
panel, ribs, and constraining layer were
aluminum.

The stiffeners were 51-mm (2-
ODD-ODD inches) high, and all sections of the

stiffeners were 1.5-mm (0.060-inch)
MODESthick. The panel directly under the

stiffener web was 2.2-mm (%0.035-inch)
thick. From this point under the web,
the panel tapered to a thickness of 1.5-
mm (0.060-inch), in a distance of 25-mm
(1-inch). The taper was actually very
shallow, and not abrupt as it appears in
Figure 7. This taper represented a two-
step chem-milled panel.

In between the stiffener web and
the panel, a very thin element, 0.13-mm
(0.005-inch) was incorporated. ThisLINES OFelement could be used as a faying sur-

SYMMETRY ace damping treatment. A faying sur-
fecae damping treatment is a damping lay-
er applied where two surfaces fit to-
gether and where relative motion or

4 fretting between the surfaces might oc-
cur. For the undamped runs this thin

EVN-VE element was given the material proper-
~\ EVNEVENties of aluminum, and it contributed

MODES l.ittle stiffness to the ribs.

The approach to evaluate this con-
strained layer damping treatment varied
slightly from Lhe steps outlined earli-
er. The "undamped" structure actually

-included the damping and constraining
layers. The stresses for the undamped

[. forced vibration analysis were obtained
NES OFby giving the damping material a very

low loss factor, 0.006, the same lose
L. factor as was used for the aluminum pan-JUEO ols and ribs. For the damped forced

ANT -SYMMETRY vibration analysis, the damping materialNTI was given its normal loss, factor of
Fig. 6 - Mode Shapes for Various Symse- approximately 0.9 at the temperature and

try Cnditons.frequency of interest, and now stressestry Cnditons.were obtained.

4The model shown in Figuro 4 con- frThe first five modea of the panel
ai~ts of 285 elements and 929 nodos, fo o the symmetric-symmetric boundary

a toal o alost ,50 degeesof fee- conditions are listed in Table 1. Our
dam t th of e alot~ r 2,5U0 dreso fre- invvatigation centered about the third

d'~. Wth he ounaryconitins ho- moe, the 3,3 mode at 120.1 Hz, as shown
gon, a panel 1,524-nuh (60-inches, long in Figure B.
by 812-mm (32-inohoa) wide was modeled.
tic dAistance between stiffoning riba was In the undampeid and damped forced
254-t-mi (10-inchv&) . T(he cross-section vibration analyois, the force was a har-
of the structure io ahoiwn In Figure 7, monic pressure loading normail to tho
from which it is reaiy to identify the surface of the pal. The pressure
variosg layurs in the model. corrosponded to an acoustic tmound pros-

lllo rbf;an dapin macr ,j laor sure level of 165 dO. A "mall amount of4 Th rib an rlapiig mctera1 lyer inherent darapinqj is included in the basowure modeled with oolid elemetinto, Which structure Closa factor - 0.006) to simu-
aro shia deforlaable. It in impurtant lato actual atructulxal damping and to
thait tho dtimp ini layer is mde lud with opt rnnsath aualfeshear doforitabie oluon~ta, sinceli von qep thr respondatite cntra frnt
atrained luyea' dompinq troaitment distiL- queue"lin for te. mo costraine

potu unoqy hrouh uhar aforatio. ayor dampiny treatme~nt consists of



'1 406-mm
(16.0")
254-mm PLANE OF

2.2-mm r (o.o1)
,0.085") 5i-mm 203-mm SYMMETRY

(2. 0") (8.0" t .)
T 1.5-mm
T.(0.060")

.CONSTRAINING 0 O.13-mm (0.005) PANEL
LAYER FAYING SURFACE DAMPING

51-mm DAMP ING

(2.011) " LAYER

- 1.5-mm

(0. 060")

(0.73")1
Fig. 7 - Cross Section of Panel Model.

TABLE 1 analyses was to determine the effect of

MODES OF UNDAMPED SKIN STRINGER PANEL damping treatments on the blade airfoil
on the modal loss factor of the blade.
The forced harmonic response (magnitude

Mode Frequency (NzI and phase angle) of the first bendin%
-_ _ _ _ _ " _mode of the blade was studied for the

48.8 following cases: (1) undamped blade;
1*3 68.9 (2) blade with free layer damping treat-
3,3 120.1 menti (3) blade with constrained layer

1497 damping treatment; and (4) rotating
3,5 159.2 blade with constrained layer damping

_____________________treatment.

0.3 1 -(.0l4-inc ) of 3M Company's
.SD 112 damping material (properties The model, shown in Figure 10, con-
chosen at 29C 185"F) and 120 Hlz) and sists of 234 elements. The axial length
0.2-mm (0.008-inch) of aluminum con-
straining layer. The complex modulus was divided into six sections, giving 39
data for the dampin3 material are elements per section. The cross-section
shown in the reducod temperature of the blade is also shown in Figure 10.
monograph in Figure 9. The damping treatment consisted of a

0.25-mm (0.010-inch) layer of Corning
The results for the undamped and 8463 glass covered by a 0.13-mm (0.005-

damped panel are given in Table 2. With inch) layer of nickel. The glass layer
was modeled by twelve elements per sec-an inherent loss factor of 0.006, the rion, the nickel by twelve elements per

stros in the undamped panel was 263 MPa section, and the blade by fifteen e-

(38,100 psi). With the addition of monts per section. The boundary ondi-

0.35-nn (0.014-inch) damping layer and a tion used in the analysis wa the base
0.2-nm (0.008..inch) constraining layer, of the airfoil fully constrained in the

the logo factor increased to 0.029.

Stress was reduced by 90 percent to 48.5 x, y and z directions. The platform and
Mii'a (7,030 psi), The addition of the root of the blade were not modeled, be-

cause coordinate data was not availableuapinql treatmeent represents only a 10 for these portions of the blade. The
pereent increase In weight of the struc- frequencies dotermined by the finite
ture. element model wore higber than the fro-

quoncios of the actual blade. This is
t) d I=lado because the root and platform contribute
An another example of usint finite flexibility to the blade. However, for

eonemen 4 to analyze dampin1 dooigns, the the purposo of analyzing damping treat-
ro.;ults of anolyso on a turbino blade ments on the airfoil section of the
are pestnited. The purpose of the blade, this is not a serious limitation.

6



The analysis of the turbine blade
followed the four steps outlined previ-
ously. That is, the natural frequency
search and forced harmonic response were
performed on the undamped blade and then
repeated for the damped blade.

The purpose of the force harmonic
response analysis in this example was
not to determine absolute stresses and
absolute displacements, but was used to
show the relative decrease in response
with damping as compared to the undamped
response, given the same loading condi-
tion. This is best illustrated by an
amplitude-frequency plot, which can be
generated by calculating the response at
discrete frequencies in the neighborhood
of the resonant frequency of interest.
From this'plot, one can identify the
half-power bandwidths and then compute

EDGE VIEW UINDEFORMED SHAPE the structural loss factor for that par-
ticular mode, as discussed earlier. Thus,

- the end results of the forced harmonic
response analysis is the structural loss
factor, which is independent of the load
applied. The loading condition for the
forced harmonic response was a point

Fig. 8 - Mode 3,3 of Stiffened Panel. load applied at the tip of the blade.
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TABLE 2

RESULTS FOR UNDAMPED AND DAMPED PANEL

Condition Frequency Mode Damping Stress % Stress % Weight
Reduction Increase

1.5-mm (0.060") 120.1 3,3 0.006 263 MPa 0 0
Panel, Undamped (38,100

Vpsi)

1.5-mm (0.060") 120.3 3,3 0.029 48.5 MPA' 80 10
Panel, 0.35-mm (7,030
(0.014") damping psi)
layer, 0.2-mm
(0.008") con-
straining layer

A total of eight configurations and
sets of conditions were analyzed by the
finite element method. The seven non-

0' rotating cases and the one rotating case
are shown in Table. 3.

Figure 11 shows cases 1, 2, and 3
on the same plot for comparison purposes.
Cases 1 and 2 were the undamped blade at
room temperature and 496*C (925*F), re-

MODEL OF spectively. Comparison of these two
plots shows the downward shift in first

TURBINE mode frequency due to the higher temper-
ature; the change in frequency was ap-

BLADE proximately 0.8 percent. Comparison of
case 3 with case 2 illustrates the in-
creased first mode frequency of the
damped blade which was due primarily to
the stiffness of the nickel overcoat.
Of course the most obvious feature is
the marked decreased in response of the
damped blade compared to the undamped
blade.

V4 M CA51 I0,13-mm NICKEL LAYER 4.' ,kP
A0005") 0.25-mm GLASS LAYER ,

A

CROSS-SECTION OF TURBINE BLADE Fig. 1 - Comparson of nanpod and Un-
Fig, 10 - Finite Llemont Nod ol of Tur- dampod Posponso.

bino Blade.

'i *)
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TABLE 3

ANALYSES OF TURBINE BLADE

First Three Composite
Case b~scription Modes (Hz) Loss Factor

1 Bare, undamped blade, all material properties 1,085.1 0.002*
at room temperature 1,972.0

3,010.4

2 Bare, undamped blade, all material properties 1,002,7 0.002*
at 9250F (406 0 C) 1,822.6

2,782.0

3 Damped blade, full blade glass coating with 1,050.7 0.011
nickel overcoat, material properties at 2,847.4
925OF (4960C) 4,032.9

4 Damped blade, full glass coating, all material 920.6 0.008
properties at 925OF (4960C) 1,660.8

2,845.7

5 Damped blade, full glass coating, all material 940.6 0.0022
properties at 800*F (427 0C) 1,690.7

2,917.3

6 Damped blade, full glass coating, all material 907.3 0.0044
properties at 1,000OF (5380C) 1,641.0

2,792.2

7 Damped blade, full blade glass coating with 1,082.4 0.0083**
nickel overcoat, all material properties 2,870.6
at 925OF (4960C), 7500 rpm 4,037.5

8 Damped blade, full blade coating, with nickel 1,058.7 0.0122
overcoat, all material properties at 9250F 2,874.5
(4960C), glass layer modeled with solid 3,999.2
lements

*Blade material is assumed to have an inherent loss factor of 0.002.
**The loss factor is approximate because the peak is non-symmetrici loss factor

wni estimated by using the left side of the peak and multiplying bandwidth by
two. Analysis includes blade rotation effects.

A series of analyses was completed In a structure with a free layer

for a non-rotating blade with an 0.25- damping t reatment, the damping i pro-

ruii (0.010-inch) glass ireo layer coat- portional to the loss modulus. The loss
iwj (full blade coverage) at 427, 496, modulus (modulus x loss factor) of Corn-
538"C (800, 925, 1,0000F). 1%e peak ing Glass 8463 versus temperature is
structural loss factor occured at the shown in Figure 14. Superimposed on
tomperature of 4960C (925 0F), at which this graph is the structural loss factor
tho loss modulus was also at a maximum. of the blade with full glass coating.
Tho complex modulus data for Corning From this plot it can be seen that 'the
F463 gilss are shown in the reduced tem- loss factor predicted by the finite ele-
poreiture nomngraph in Figure 12. The ment analysis has the same temperature
cplitude-frequoncy response for the profile as the loss modulus. For a free
thr.ae tiperatureo is shown in Figure layer damping application, those are the
i3. This plot shows the reduced re- trends expected. Also shown on this
vpi'irao amplitudo of the blade at the plot is the experimentally measured
op~t- um temperature. The shift in the structural loss factor for a blodo with
11rti avd- froquency with tomperature a half-blado glass coating: the pc-k
car -Alqo be Neon. Tho structural loss structural loss factor is higher and oc-

'izrtirn at 427, 496, and 5389C wore curs at a lower temporaturo.
0.0022, 0.000, am 0.0044, rospectively.
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Coating at Three Tempera- Loss Factor Versus Tempera-
tures. ture.

10



Figure 15 shows cases 3 and 4 to- criteria used to evaluate the passive
gether for comparison purposes. The damping treatments were set forth, as
damped blade with glass coating and were two methods of calculating the
nickel overcoat exhibited a lower re- structural loss factor. The example of
sponse than the blade with just a glass the skin stringer panel demonstrated the
coating. Case 4 had a lower first mode superior weight effectiveness of opti-
frequency because the glass coating add- mally designed damping treatments for
ed mass loading to the blade, but con- reducing stress. A ten percent increase
tributed very little stiffness since its in weight yielded an 80 percent reduc-
modulus was an order of magnitude lower tion in stress. This reduction in
than the modulus of the blade material stress compares favorably to the results
or nickel overcoat, of several successful damping treatments

shown in Figure 17. The analysis of the
Results were obtained for an ini- damped turbine blade demonstrated the

tially stressed damped blade (case 7, effect of temperature on damping per-
glass coating with nickel overcoat). formance (see Figure 13) and shows a
The initial stress was caused by rota- good comparison between predicted and
tion at 7,500 rpm. The shift in first experimental results (see Figure 14).
mode frequency due to rotation can be
seen by comparing the rotating and non-
rotating cases in Figure 16. The width I0
of the peaks in each case are approxi-
mately the same, indicating that each ...4I

has about the same level of damping. 80 T-FAFs

-FUSELAG aRETES O F ER

CASE 4 *S6641 RUDE

- DAMPED BLADE BULKEAD FA 
R

.0 FUIJLL CLASS COATING
PROPERTIES 6 4%O 9250F) i60

CASE BLADE INCREASE LIFE OF
DAMPED BLADE 10- "

EXISTlNG STRUCTURE
GLASS WITH NICKEL BY FACTOR OF I0 .
OVERCOAT 40- FOR NORMAL .,-

PROPERTIES 0 4%
0
C I0250F) : TEMPERATURE.,'

'1. .011 f 4 - RANGES --

Z ADDITIVE ---
." " [021 q, O, O I-.. DAMPING..A/ F

I w 2 w 20 - STIFFENING-
'I" AFFDL TR 74-112

SONIC FATIGUE
- - DESIGN GUIDE FOR

-- _SKIN PANELS
900 950 Iwo2 1050 10 OO 0

FREOUENCY 0I 20 30 40

Fig. 15 - Comparison of Blade with P' ENT WE0HT CREASE
Glass and Glass and Nickel. Fig. 17 - Damping as a More Weight

Efficient Procedure.
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DISCUSSION

Votcet Where did you get your v isoelautlo
propert la frost Were they assumed?

S 94r. Kluegenert We do a lot of testing on the
V"#006190tia ProPertiest Of mterials at the
University of Dayton, to vo got then from our
data bank. Ve used a reduced temperature
nomogram tar the material.

Mr. Qlater (!loakwoll XnternatIonal: Tho first
model that you saly&ed as a panel; did you run

aoustic tst. to verify your aftlysia?

Nr. Kluelenet No, me didn't. We soed some
tout reultui to use that assumd loss factor.
We had me test data that sId the undamped
lost factor vus about W40G That its vhere ut
got the assuwed inherent damping ftromV e
didn't **%par the predicted stres# to a test.



DETERMINATION OF NORMAL MODES FROM

MEASURED COMPLEX MODES

S. R. Ibrahim
Department of Mechanical Engineering and Mechanics

Old Dominion University
Norfolk, VA 23508

ABSTRACT X). jth characteristic root.

A technique is presented to compute a set of normal w Natural frequency (rad/ec.).
modes from a set of measured comple'n modes. The number of
elements in the modal vectors, which is equal to the number of Damping factor.

measurements, can be larger than the nimberof modes under Transpose of a matrix
consideration. It s also shown in this paper that the practice of
normal mode approximation to complex mode can lead to Invere of a matrix.
very lar - crurs when the modes are too complex, A numerical
example and n simulated experiment are presente< to Illustrate
the concepts discused und to support the theory presented. INTRODUCTION AND BACKGROUND

Modal vibration test# are carried out to experimentally
NOMENCLATURE determine a set of modal parameters for the structure under

test, These model parameters ae usually used to verify, deter-
(C0 Damping matrix, mine or improve some analytical model of the structure,11.81.

e]: Modal damping matrix n~l). Mott of the aPproachos that use experimentally doter.

Fmined modal paralmatr for dynamic modeling of strucftr
: Frequey fi . ueo or more of the following equations:

I: lImaginary put of ejth lrnt of a complex I[t I 1 0) W,* t2 o) (1)
modal vtor.

JKJ! Wlavl insfI -0 (V10 In' 1 (2

jkj : Mod stiffho mal (diagonl). to) lIK 1101 - k] (3)
matr M "rix. ) (4)

tol Model ass matrix t atton 01 's or the normal modet venlml :Modalmau alri (dmlml)thovjth, In p~ile, tho mmunild moli are the. wm'lly

modles, which In *ome cAasn I* very differet *0#4
•q e Nel prt of the jth tlemt of a Complex nonna] mode. As a mattor of fut, in vi ration tesing and

modal vetr. analysis wurk it i# frequetly wunted that damphi Ivels
w.n a vy smllI a n/or the dampng mIrix s proportional to

4r,,m+ * Two at) |ft d@.hiniq *4 (-P) t arsslsm for do 0ether the mo. or titffaia m.i, an .mumption that is
appoximaWte norm ood" *iWtwtoU, not valid fot massy of todayi tructures. E$uvh ummptiotu

ad the lack of dlttintiatloion otwoe itormaoti and twinplint
01jl : Phase Inle i thejth elf of 1ma moti s may t ttbut to th lack of atool t awasue

v.O for I WiO+I comptie the nmfi.al modes.

a : antw gile of the Jtll elment of i "mleI" With the intdiutil of coiputer it'hniloy + t imodl
modwl dntkloolflation itt the ealy e 0is, Ui oth fr y dotsmin

(1,101 d tim domain I I 1.15I tehniquos, the titiouion of

i jt+ elemeit oat nWormal mdaw voctr, nonal Vwe rr coMlep| mott tatd to peolt fr a swe .
In tlon y dtmtillh it a + c to wtlh Ight dipigt and

jiti normal modal we tor ll spaced mode, u, fweq(Inlly ftewsilolil a etiltr of
te 144ila atles Aselated with the iutgad miodal vfttor,

jI elth 04m of 6,W tomple moa vector. li1l. &M@. r rhm and Um"' -tu,. want to the extint
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In some cases, the scatter of the phase angles of the modal where the assignment of a positive or negative sign which is
vectors was due to the fact that the damping is nonpropor- equivalent to 0.00 or 180.00 phase angle, depends on the
tional, and hence the mode shapes are complex. Time domain angle 0 .(0 tan- iIl/R-) of the complex modal element and
approaches to modal identification, which contains no its relation to some arbitrary angles a, and 0 2 as shown in
assumptions regarding the level or proportionality of damp- Figure 1 (b). In other words, the phase angle Pj for the approx-
ing, also indicated that structures, in many cases, possess imated normal mode element 01 is assigned according to the
complex modes. equations:

Normal Mode Approximation to Complex Modes pi = 0.00 a2< 0  < a 1  (6-b)

Normal modes are defined as modal vectors whose pi = 180.00 al <01 <a 2  (6-c)

phase angles are either 0.00 or 180.0*. Such modes ecist for
extremely simple structures, that do not need any testing any- It is enough to state that, irrespective of the choice of
way. They also exist for structures with no damping or al and a2, it is unacceptable to assign two different signs to
structures tailored with proportional damping, none of which two elements of the approximated normal modal vector be-
represents today's complex structures. cause the phase angles of the corresponding elements of the

complex modal vector differ by a fraction of a degree.
Unlike normal modes, complex modes may possess any

phase angle distribution. Each element of the modal vector Such approximation can lead to erroneous and mislead.
is described by a real and imaginary part of an amplitude and ing results and conclusions. An example is the orthogonality
phase angle relative to the arbitrary element. A scatter in the check where the orthogonality of the muaured modes with
phase angles of as much as t90.0 from 0.0 or 180.0' is not respect to the mass matrix is tested. Large off-dIagonal terms
uncommon, may result not only because of errors in the mas matrix or

inaccuracies In the identification process, but because of the
Recoglnizing the phase angle scatter for measured normal mode approximation to compiex modes.

(complex) modes, and the need for normal modts for use In
equations such as (1). (2). (3) and (4). reseatchcrs and users
have frequently used normal modes approximation to com- NUMERICAL EXAMPLE
plex 'nodes. The purpose of this example is to show that even though

Figure I (a) shows an element of a complex modal vec. all the parameters used are exact:
tr p which is complex and can be expressed as: 1. Complex modes can be very different from normal

-* U, (5) modes, even for lightly damped modes and sall
nonpropo tlonallty in the damping matrix.

The uppNxlmuto normal mode element Oj co mdsponing tois:2. Large wrors my mutt from m~uming that normal

modes approximated from complex modes are

j)(84) orthogonal with ruspeat to the mass matrix.

The system used in this example Is a ten deore-of.
, freedom system, This system was constructed (simulated) by

analytically Onerating ton normal modes at ton messrementI stations of a smply supported beam, ton undamped mtura
froquenWs and a ktiffness matrix for the system. The natuia
frequencies were seleted corresponding to 10.0, 12,0, 1.0,
20,0, 24.0, 30.0, 8.0., 43.0. 46.0 Wn 60.0 Hs. Then, a po-

.0portona damping mat (equivalent to 1.0l% modal damping
fictor for all the tk" mode") and the mass matisx were ctmi.
puoed from the &ame information

To make the damph matrix nonlportloa, the
damp olements C(3,3), Q4,4), C3,4) and C(4,8) were

'a douWed Complex modes, damping factors, and damped
natural frequi nes were compumted for the system. Dampin
4 fto chageod from 1.0% for Al mode for pbrtio
dampnlS naoe to 2,0 1.3, 1.2,1.2,1.1 1,9,2.9, 3.9,1.1,
al 1.0 Kcitet for the nonptopm6lo dampi4 tao. These

" tdanmpin ft.wton rlatively mall but neethls sow
..- ... shto wed h lovettOempl t tiels thawsth

~ , ~ two moitcompki maoehapft. mode.Oand 0, Waed with
te o"repoding Asoswal modes. PhWs angles of is much a

- • 9 Oand 14," for modes 9 and 10 m oteed srestvely.
Ab lawo difrecoo W amplitudes oxi betwfto smal nd-

*1 404,% ~l S-,A9 t& $(S01To Illustrate the taWa orrs that may reutt from normal
ni~ik. auma..e mxe appomnation to corn jle mod". approximated
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Table 1 - Comparison of Theoretical Complex and Normal Modes
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respect to the exact mass matrix. The results ae shown in where n > m, which is a typical test situation. To compute
Figures 2%a) and 2(b) for different values of *I and *2. In the normal modes from this given set of complex modis,
Figure 2(a). *I and 02 were chosen as 900 and 2700, while In one of the following two approaches may be used,
Figure 2(b), they are 1356 and 315*, Errors in the offdiagonal
terms are as high as 23.29% for the first case and 35,49% for Approach 1. hUig an Oversied Mathematical Model
the second case.

From the given modal pa=etes, displacement velocity
and acceleration responses are fomed according to the

THEORY: COMPUTATION OF NORMAL MODES FROM equations:
COMPLEX MODES

am

In this section, two approaches ae presented to compute E(t)} .) f#t) * jalt) . (74)
normal modes from a measured set of tomplex modes, The 1-t
required data are a set of modal praumeten such as may be
Identified from a modal survey test. Then modal parameters I
aenamnly setof complex modes 10),i- 1.... ,manda {a(t))- X +),{} i. {s(0) (7.b)
set of corresponding chmceMW roots X1, I - 1, . .m (and
their complex conjupts). The modal vecto have n eleets

00 4* wther nf(), is(t), 1,(aj axe added tand nols of unltorm

S"d.buti These nq.s am than wad in the Aam* vet

*0 - .d IXP qai tI't
6.3. k0 N46 iv~ t6 f~) *,A 0W

.. .. ;ii4 .... 1 Ii 1 - I l (7)-
.... W6 .. .. i !-h6 Njaq h4 4-,th ny. C x(t) (7)

NP L's: 01tw40" eIA, too* *a"3 017. [AI

whm JXI and II contain etaonramewaa Inlm
instants, )eo oquatloan ftj th (A)I mt canW Iadaut.
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960 '*2 9".60~olP*Noay, without any flw, the astxis (XI id**gtal
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By computing matrix [A 1, the 14%1 K ] matrix gives It is extremely important to point out that JI- I K|
normal modes according to the eigenvalue equation: and tA- CJ obtained from either approach are not unique

(10) since they are functions of the introduced noise of the as-
3" 'I l 0 sumed modes. However the set of normal modes, correspond

ing to the set of given complex modes, was found to be
Approach 2. Using Auumed Mlodes independent of the introduced small levels of noise or the

The given set of complex modal parameters satisfy the assumed modes, [14
equation:

SIMULATED EXPERIMENT
[m 1 AK %I- IC1 0 (1..r) (1)

ii To test the validity of the theories presented in this
Since we only have m modes and the system has n degrees paper, the ten degrees-of-freedom system previously discussed

of freedomequation (11) cannot be solved for [M" 1 K A- I C]. in the section "NUMERICAL EXAMPLE" is used here as a
Let us assume that there exists a set of vectors I P} j and a set simulated test structure. Response time histories containing
of characteristic roots si, j = m + 1. m + 2. ... n. This set of contributions from the last four modes measured at the ten
assumed parameters are selected such that: stations were generated. The last four modes were selected

because the last two modes show a high level of complexity.
Xi  s, (12-a) Simulated measurement noise was added to these responses,

with a noise/signal r.m.s. ratio of 20%, to represent condi-
{P j* 1 '2 . , {a}  (12-b) tions in a real test. From these responses, the complex modes

and characteristic roots were identified, using the time
where faj is any vector of coefficients. The second equation domain approach [11). Normal modes were computed using
(12-b) impliesthat {PIj'and 14} i forall i'sandj'sform alinearly the two approaches presented here. The assumed modes
independent set of vectors. In such a case, it can be written that approach produced results identical to those of the oversized

sp math model approach.
[,M'1 K M1-1C] IjI -1- (j U m+1,m+2, ... n)

Table 2-A and 2.B list the identified complex modes and
(13) the computed normal modes for the last two modes. A close

and equations (11) and (13) can be solved for (M" I K " C] examination of the computed normal modes, in comparison
from which normal modes are computed according to with the theoretical ones, indicate the validity of the
equation (10). approaches presented.

Table 2-A - Identified Complex Mode and Normal Mode
(Mode No. 9)
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Table 2-B - Identified Complex Mode and Normal Mode

(Mode No. 10)
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THE EFFECT OF JOINT PROPERTIES ON THE VIBRATIONS OF TIMOSHENKO FRAMES

I. Yaghmai
Department of Mechanical Engineering

Sharif University of Technology
Tehran, Iran

and

D. A. Frohrib
Department of Mechanical Engineering

University of Minnesota
Minneapolis, Minnesota 55455

Mechanical support fixtures comprised of short beams and joints have natural
frequencies which may differ appreciably from predictions based on slender
beam theory and which neglect joint properties. This paper presents infor-
mation on the role of Timoshenko effects and joining properties on the first
several natural frequencies of frame structures. The interaction between
these properties and the number of vertical bays of the structure is also
portrayed.

INTRODUCTION only joint effects in slender beam structures,
using lumped mass models.

Frame structures are regularly used to sup-
port equipment ina vibrational environment, such In this paper, joints are considered as
as shock and vibration test stands and rotary independent structural elements with mass, geo-
equipment mountings. As resonant-free supports metric size, and flexibility. Joint deformation
are desired in such settings, compact struc- is characterized as a sum of rotational and
tures composed of stiff beams tend to be used. translational components as described by Field-
Then, the size of the joints and short beam ing {13}, Figure 1. Five types of planar joint
effects play important roles in the natural fre- displacement and deformation are included:
quencies of the frame.

I) rigid body rotation,
Frames are typically constructed of stan- 2) rigid body translation,

dard beam members fabricated with welded, riv- 3) bending deformation,
eted, or bolted joints, which represent flex- 4 shear deformation,
ible arrays; often, their size is not small 5 axial deformation.
compared to the length of the members of which
they are constructed. To place the combined effects of short

beams and Joints in the context of application,
This paper presents information on the the effect of the number of bays, or vertically-

vibration of plane rectangular frame structures connected cells, of the frame was included in
with flexible joints. Because there is inter- the predicition of natural frequencies. These
est in a large spectrum of natural frequencies correlations are valuable when automated proce-
for supporting structures, the beams and col- dures, such as finite element methods, are used
umns were retained as distributed parameter to determine natural frequencies, as the role of
models represented by Timoshenko Beam Theory Joint properties can then be understood when
(1}. Joints are modelled as end connections modelling the structure.
with both axial and bending/shear flexibility,
and with geometric size. MATHEMATICAL REPRESENTATION

)he deformation of joints connecting As vibrational amplitudes are regarded as small,
structural members ha been studied, primarily static and dynamic coupling, and coupling be-
using experimental methods {2-ll}. Joint flex- tween transverse and longitudinal beam vibration
ibility can have significant effects on inter- in the continuum equations are neglected. How-
nal forces and moments within the structure and ever, transverse and longitudinal coupling
hence, on its natural frequencie.., as demon- occurs through the boundary conditions, or
strated by Lionberger, et al. {12},who studied- joints,
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Figure 1: Joint Deformations and Displacements

The inathernatical frane model composed of 4
Timoshenko boams and inertial/flexible joints, d + b 2 d2 -is described in F ure 2. Joint inertia (mj), d C d C

Oaxial Stiffness (n), and combined beoing and
shear tiffness () are included. Joint size is
included by tiam length (L') of size loss than
center-to-center joint length L). The solution " b2(l - b2 r s') Y

% is formulated by applying the method of Wang and
Kinsman 14 , where dynamic moment and shear 2
slove-deflection equations were developed for (1 b2 , 2 s') QLI 4
T'lunshonko beams~ with Hioid ands. Yhe non-
dimntionalized forms of the oquatiors are:

,I 20
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Figure 2: General Model of Combined Frame and Joint Properties

-4 b2  s 2 _ Translational:

Y(0) . ()1/ 2) 1 (l (0) - 1 + (t1/2) 01

b 2 (1 - b z r2 2) 0,
V(). (t1 / 2) &2 (1) (1) - Y2 - (t2/2) 02

whtire symbols are identified in the nomencla-
ture. The solution 0 these equations for the The axial problem wherein boundary tensions are
boundary conditions described in Figuro 1 are
-. igthy, and are presented by the authors in glated to boundary axial motions, can be re-rufeenc (lS. Te asocitedtwo ounarygarded as an uncoupled problem, as shown in ref-efetronce (15), The associated two boundary erence (IS).

(Ondition are:
Rutattonal: The use of dynamic force-deflection equa-

tions Imalements the solution by perwitting
&) (0) - (1e ) (o). L'O dynamic equilibrium equations to e derived

which relate beam boundary loads to required
joint loads for dynamic equilibrium of the Iso.

d lated Joints. The resulting dynamic equilibrium

1~ +2( 1 02 relationships for deflections of the entire
structure of ft bays form a 3N x 3A tri-diagonal
- atrix, whose determinant provides the charac-
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teristic equation from which natural frequen- flexibility arises as the number of structural
cies are calculated. Computerprograms (FREQF2, bays increases. The combined role of both axial
MODEF2, RESP2, FREQS2) are given in pages 168- and bending deformation of the joints for such a
192 of reference {15}. case is illustrated in Figure 7. Here, as a

number of bays (N = 5) exists, the mode shapes
RESULTS AND INTERPRETATION associated with the higher mode numbers demand

progressively more severe relative motions be-
An initial perspective of the role of joint tween bays for higher mode numbers. This con-

flexibility on the fundamental natural fre- trasts with greater curvature within beam mem-
quencies of multi-bay structures is provided in bers at higher modes of a one-bay frame. Con-
Figure 3. There, Timoshenko effects are neg- sequently, with several bays, the joints are
lected (r = s = o). As the number of bays (or worked progressively harder as the mode number
cells), N, increases, the role of Joint rotary increases, and the natural ftequencies are of
stiffness, a, becomes of lesser consequence. pronounced difference for a given mode for two
However, for one or two bays, the role of joint typical values of bending st4ffness, a. These
flexibility is a dominant factor. Theeffectsof frequencies are somewhat insensitive to axial

L2  stiffness for the low modes unless bending stiff-
slenderness ratio of the frame bay gee- ness is very high (a b 0).

metry, interactive with joint flexibility (a) CONCLUSIONS
are depicted in Figure 4. The fundamental
natural frequency is significantly affected by The role of computational systems to study
joint stiffness for all slenderness ratios, the dynamic response of multi-degree-of-freedom

systems has permitted the analysis of vibratory
Whereas Figures 3 and 4 depict the sensi- response inconceivable two decades ago. The

tivity of the fundamental structural natural quality of answers naturally resides in the
frequency to bay numbers, joint stiffness, and decisions introduced in modelling effort which
slenderness geometry for classical slender generates inputs to these algorithms. This
beams, it is important to understand the rele- paper demonstrates that frame-like structures
vance of Timoshenko rotary inertia and shear of practical shape have natural frequency prop-
effects on natural frequency. This perspec- erties quite sensitive to end fixity (joint)
tive is supplied by Figures 5 through 7. conditions. Whereas joints may be difficult to

model, metnods have become available to do so,
Figure 5 illustrates the dramatic effect of and deliberate thought should be given to proper

flexure parameters on several of the lowest characterization of their contributions. The
structural natural frequencies of a one-bay difference between fact and fiction in computer
frame. Here, axial stiffness is infinite, output may rely on adroit effort in this regard.
while joint shear and bending stiffnesses are
represented by a common parametero. The NOMENCLATURE
departure from slender (Bernoulli-Euler) beam
theory is progressively greater as the mode b dimensionless natural frequency;
number increases. The second mode, symetric 2
about the structure's center, demands greater b - w' nAL4

joint relative motion, and consequently at
low joint stiffness levels (ca), that effect is
responsible for greater deviation of second k shear coefficient (shape cuefficient)
natural frequency values for slender and Tmo-
shenko tals0a jointmasof tJon

* The role of axial deformation of both r dime-isionless rdius of gyration of
joints and beams is depicted in figure 6. Two beaom or columi cross-tection;
extreme cases are graphed! for axially infin- 12 IiAL 2
Itely stiff members (t --) and for non-exis-
tent axial stiffness (n• 0). Again, the
effect of axial stiffness is progressively s /(kAGL
evident as the mode nhtuber increases. In
addition, the role of axial stiffness is more t1 , t2  Joint width, 1. 2.
pronounced for any mode for infinitely stiff
joints in bending (k 0). Under this condi- x position coordinate along beo or
tion, the compatibility laws relating the caluo.n 40%i
Inematics at the joint boundaries demand

grea er axial motion Itf joint internal rotary A bear or colum co% ectonal area
"distortion is prevented. Nturally, the Struc-

turo thet beCOMeS more sensitive to siadl flex- E modulus Of elasticity
*ibitity, as reflected in the variance between

dashed and solid curves for each mode number 6 shear 0iodulut
at q 0.

beam Or coiu10 cro-sectiOnal
Another iWrortnt tanIfeStation of axial Ment of inertia
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SOIL STRUCTURE !NTERACTION AND SOIL MODELS

John M. Ferritto
Naval Civil Engineering Laboratory

Port Hueneme, California

ABSTRACT

Soil-structure intertaction effects can significantly
alter the computed seismic behavior of a structure. The
accurate characterization of the nonlinear soil behavior
is important in considering seismic amplification and
attenuation. A detailed discussion of soil models, fit-
ting of parameters and comparison of results is presented.
A comparison is given of linear and nonlinear example
data.

IN CTION

Soil-structure Interaction effects can Major liquefaction havard existing at West
significantly alter the seismic loading that Coast Naval stations. A more recant investi-
reaches a structure. This Rreatly influences gation at the Naval Air Station (NAS) North
the response of the structure. To complicate Island, CA, (Rof 2), concluded that liquefac-
the problem, the Navy has unique, coeplex tion under design earthquake levels could
structures such as piers, drydocks, power result in destruction of such critical strut-
plants, control towers, and fuel tanks, tures as aircraft carrier berths, aviation
Advanced techniques for analysis of these fuel tank farm, and underground utility #or-
structures are of interest. One tool in wide vice lines Unfortunately, almost all pre-
ussge is the finite element technique. The vious studies of the liquefaction problem have
finite element method has an advantage over been concerned with either conventional build-.
other methods in that structural elements and Img foundations or with analyses of das, and
structures themselves can be easily modeled. procedures for analysis are not available for
ovever, the semi-infinite soil field has to specialited Navy structures.

be modeled by fitote soil elements vith pre- The effective stress model is ot ajor
sribed boundary conditions. The selection of significance since the Navy must locate in
proper Material characteritations of the.non-. area where the water table is high. Even if
linear soil behavior it important in consid- liquetaction (a loss of shear stress from a
ering seismic *qlIf(cationlsttenuation. loss of effective confining stress) does not

Recent earthquakes, parLicularly those in occur, a buildup of pore pressure is probable
Alaguko Japan, and Chile, have oophasiand the both in sands and clays. This pore pressure
high d ge threat the soil liquefaction phe- buildup can be of major significance to strut-
aowenon poses to wAterfront structures, The"e tural behavior.
experiences have show# that both the nature *f The Navy has a drydock certificato pro-
watorfront facilities, such as earth-retainin go gr in progress. These structures are
structures, and tho depoaltional environmet exales of situations where a utrwclute Is
of the coastal marine soil contribute to-ajor surrecnded by soil, often with a high vatero -

. liqiefaction damage. A stu4y conducted by th - table, A briref-revi*w of certification reotts
Office of Naval lasearc. (lef 1) recopix"e a shows tArt high lsqualfctiou potential, flora-



tion, and floor and wall failures are possible. of springs and dampers. These then form trans-
Drydocks are critical Navy structures; however, mitting boundaries (reducing reflection). The
present analytical techniques reflect the solution of the true soil-structure interaction
state-of-the-art as of 1950. Basically, is obtained by superimposing the free-field
static structural analysis procedures are used solution with the structure-soil solution. If
with estimates of the soil pressure. The dry- nonlinear soil properties that affect the
dock illustrates the significance of the soil- stiffness and damping are used, superposition
structure interaction. Soil loading causes is no longer valid. A possible solution to
wall deflections which, in turn, alter the the nonlinear problem is to impose the free-
soil load. The effective stress soil model is field solution at depths along the boundary.
a critical tool for use on waterfront struc- If the boundaries are taken a sufficient dis-
tures. Dynamic analysis techniques are essen- tance from the structure, effects can be mini-
tial for a realistic assessment of drydock mized.
safety. Drydocks are only one application; This paper will present results of evalu-
others include quaywalls, bulkheads, retaining ations of material models and an approach for
walls, ocean floor structures, etc. a soil-structure analysiv.

Two points are significant: (1) the Navy
needs a dynamic analysis capability to accu- COMPARISON OF HATERIAL MODELS
rately evaluate structural safety of facilities
such as drydocks, and (2) presently no such Reference (4) gives an in-depth discussion
capability exists, of the material laws studied presenting signif-

There are procedures in use mainly in Scant amount of individual model evaluation,
support of analysis of nuclear power plants. including background development, parameter
Codei such as SHAKE or SLAVE are used to com- studies, and fitting procedures. Three models
pute awlification of vertical shear waves, were selected for study:
Material paraweters are strain dependent and

- linear. Two-dimensional programs, such as. 1. Sandler CAP75 model (Ref 5)
FLUSH, perform linear strain dependent analysis
with quiet boundaries (do not reflect earth- 2. Prevost effective stress model (Ref 6)
quake loading wive). TRI-SAC is a similar
code using elastic material properties. TRANAL 3. Zienkiewicz LIQU model with Rohr-
is a nonlinear finite element code and STEALTH Coulomb and critical atate
is a finite difference code. None of these formulations (Ref 7)
considers effective stresses in the soil-
structure problem (Ref 3). The CAP75 model is a plasticity model

The state-of-the-art of soil-structure defined by a nonsofteoing convex yield surface
analysis is limited. The influence of surface and a plastic strain rate vector that is normal
features is uncertain. Undulating subsurface to the yield surface in stress space. The
layers can create problems in modeling. There yield surface is defined by means of a failure
is a frequency dependence of response spectra envelope and a hardening.cap.
relative to the dynamic properties of the soil.
Limitations of the present procedures are Failure envelope 12 aIF(J1)

becoming more apparent as technology improves.
Since ground motion is so dependent on soil Cap Jz "C0J)
filtering, specification of motion levels
should be it the surface since bedrock mtions Figure I shows the yield surfaces. The failure
are not measured or known with certainty. envelope most be a decreasing function of the
Horizontal propagation of motion, not conaid- J1 is to the failure envelope; the yield
ered in most analysee, creates rotation4l a&rfsce most be continuous.
excitations as a result of variation of ground Within the yield surface the material
motion across a foundation. The resulting behavior is isotropic elastie defined by the
rocking and torsional excitation may increase bulk and shear moduli (figures 2 and 3), hicb
translations depending upon the phase of the are of the forit

X *),tions. Although three-dimensional techniques
.4 have not been used, only three-dimensional X a X(J, 0

techniques can capture radiation damping k)
0 effects. C i a

The strueturg resting on a soil field is
excited by a dyamic inertial force, resulting The hardening parameter, k, Is defined as the
in displacemeAss of both. The shaking struc functional of the plastic volumetric ntrai,.
tur* disturbs the ground motion, creating The plastic volumetric strain is deftied .in
secondary w*vs. These iscondary waves travel terms of material parameters V And D (Figure
through the finite eemnt spatial grid (meal) 4),

-...... reaC 1 bodary. The b uwn-ayt it a |igi-
cation of the. analysis end does #,t exiqt in a V II1 X(k) I  1

the actual case. the presence of the boundary .
A# cause a reflection of the rave. ""en wdre X(k) a K " a (k)
linear material properties ate used, reflee-
tios cau be mainmied for shear waveb. by use . a material parameter
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Figure 4. Proposed re ~tonship for isotropic
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4 The cap to a consequence of the stability.
I requirements and is prevented from acting asa

KM W Msoftening yield surface. If dilatancy octurs,
.KI the shrinking of the cap io limited to enuref7' it remains finite. A tension cutoff is

included based-on hydrostatic stress. The
model is a total stress model.

In the provost, Figure So Boil model the
PIM? ~~&IM6 o svSis'~~5~~ssoil is viewed at a laultiphase muims consis-

ties of an inelastic porous skeleton and
?huo . 41gti bolk "n~Ulktio varsuA (fill viscous fluids. The model Is a- general anlyt-

Itnvaritift of tho stfr044 Waa ical model that describes the nonlinear, anisoe-
tropic, elasto-plastic, stress and strain
depndoents,. and strength properties of the
skeleton whe# subjected to a tbree-Ameassonal
loading. Prevoxt develops the co'aplod field

----- tensor equations for a saturated soil consis-
Ie ub to tin# of a perfect fluid and a piecmvise-inear,

______P__ - tiae-independent porous skeleton where the
ekh~n pore fluid ad the "olid grates are incoepress-

* ible. ?b. general forsoleation of the field
f 's~ 0 equations cam he reduced for the following

4 3. Fully deatIwI4 stee4 *tat*
s*Ch~.t~vha.t 0 ~Theelaticandpl It~ coapoonts of deforma-

tine bre sewtt "~ it io assumed the #Is$-
~~~~~UA 0!~hh; d ic o h material Is iootrtopic aisd Inaeor

It~vr.~#t ti titv _mtrvot frviation ttw~or AtW toi shwr 1hear boaltiearity and autisograpy
.144vtt~vohutI ta result finm the matrial's plasticity. Ihe

elastic cooposts are related by a generalised
Mootes IO in which the shear mdlus is
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A /density. Points C and E (Figure Sa) define
(W* -, the critical state conditions for triaxial

-' compression and extension and the slopes of
lines OC and OE remain constant. An associa-

c. tive flow rule is used on the yield surface,
f , to compute plastic strain rate vector com-

f I n -p~nents. A plastic modulus is associated with
V the inner yield surfaces and varies along the

M yield surface. Projections of the yield sur-
face onto the deviatoric subspace define
regions of constant plastic shear moduli. A

V3p- (a*l,) nonassociative flow rule is used on the yield
surface. The plastic deviatoric strain rate
vector, however, remains normal to the projec-

Stion of the yield surface onto the deviatoric
subspace. All the yield surfaces may translate
in stress space, touch and push each other,
but they cannot intersect. When the stress

A loading point reaches yield surface all the
yield surfaces are tangent to each other at
the contact point. If a stress rate is then
applied such that the stress rate vector

/~ ' points outward, the plastic strain rate vectors
%'. .~' ~are given by the nonassociative flow rule., 0 /' / ' .; The yield surfaces translate together and

C" remain together based on the stress path.

/ Overlappinl of the yield surfaces is prevented
J I \ \r' .V 1. * by restricting contact to points only having

,.t .the same outward normal. The pore pressure is
owl Y L_-- M related through the bulk modulus to the plastic

i The Zienkiewica soil model Figures 6, 7SC and 8 is formulated in terms of a plasticity
model. An elastic limiting yield aurface can
be formulated in terms of an effective stress
tensor and a hardening parameter which is a

kfulction of plastic Strait. Elastic straining
Is occurs below the yield surface and both elastic

1" " : and plastic rain occur on the yield surface.
P The direction of plastic strain is defined by

the plastic potential function. A flow rule
for plastic strain can be written relating. 4.stress to. plastic itrai#. The total, stress-
depdet ,. strain Increment can be divided

- Into elastic and plastic parts.

- ,--. . N. • RSULT

Figures 94-c present a comparison of the
" models under triaxiol loading with 50 pot con-

contant and the bulk modulus -i- assumed to be solidatioh pressure, Test data are taken from
a tunctlot ot the effetivs Oeao noriat stress. references 8, And 10, All oelis are satis-
The mdel asos a .erres of yield burfei tt h fctory to evaluating both shear and volumetric
a normlity f1lo rule ot plasticity. The rule loaditg. The Prevtst model gives the best fit
o isotropic a ti had4oniti is iot adquat to the espotilaw l data, The ralculatio u as
for soils tin #eeal sinco under unloading and repeated for a triakial loading with 100 psi
1440114.4 t@VOY441% it 10.0lies e@lA~su hhavior consolidation pteesuro Data tar the CAP?5
#i-utivyel iwti! the ttrto% it Nulls, rtevered. land OC 0odes; 4@ used directly, only changing
, -.T t htt i &4 i cAW la 6 tir ad plaslt doto- the consolidAtion vreiiur.# iata tor the
iats'oft occur Vhl1 Wotre tU stress is fully Provost moadel are Aaled hy.4 tothniquo di6-
reversed, to arccuatt fot thib cifistion, rusted In teference 4, ' Performan of the
lsotr"pir oAd kinemutic psttic hardenting rult, OmAdl wAS 61imlar to the previous tett
is Ui§d %o 4.ilo the yield ni ulares to h. tetslts.
tralit i in Otre&s Spice asi wll as to chaipo Ustit* the drailed lottopte mteridl prop-
in sire. Th@ yield -urface.§ initial positiou ritlem, uidraind test* wit iiulated usig
Aid dive reilect tho past .rt.sa-striin hi- the tioekiciil critical state moel aid the

tory, Ihe Cuteebost "bnufdary" kutt# i., a Provost "odel. R#ults art shwoi in figure 10
iolwatric" yield urftAcp Uhae six#, posi- for diriernt isolidaiious. kO1h tests

U46, A W mioment arte fusio ios ot maeial ethibis 5ood agtfore t i -t rio
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Figure 6. The M!ohr-Coulonb failure surface in Figure 8. The critical state model (with a
principal stress space representing the yield Mohr-Coulomb critical surface) (Model C).
surface of an associated plastic model (Model
A).
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Figiire 10b. Cook's sand undrained t~riaxial
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behavior and poor agreement in stress pat
"(stress-stress) tracking, The fitting of the ..extent of pore pressure generation is very

critical state model parameters, although six- sensitive to the fluid modulus. This may be
pie in concept, did not allow the model to tuned by mtching test. data. The model exhib-

Smatch the volumetric data closely. This is its pore pressure buildup both in loading and
thought to be the major cause of the problem. unloading. This, although crude to approach,
The beat fit parameters force the model to does show cyclic degradation effects. Cyclic

__--overcompsct (densify) the sand, resulting in degradation effects are not presently included
" -- -- high pore pressure and lost of stren nth. The in the Prevost model.i V.4

"" : s'/scs
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STATIC LOADS 4. Perform a dynamic soil structure
analysis to repeat soil-structure

Dynamic analysis requires the correct with displacements prescribed. First
transmission of the exciting wave. The deter- quasi-static (dynamic with long time
mination of correct stress amplification or steps) for gravity; then restart
attenuation is dependent on the material char- with shortened steps for dynamic
acterization. Most studies in the past have shaking.
characterized the earthquake 5oil structure
problem using strain-dependent elastic proper- ELASTIC ANALYSIS
ties. One aspect of this task was to evaluate
stress attenuation using nonlinear material Using the approach outlined above, a soil
properties. This effort is directly related column mesh was excited with an earthquake to
both to the earthquake soil structure problem simulate free-field motion at various depths.
as well as to shock/blast analysis work. Cook's sand (strain-dependent) properties were

In the nonlinear representation of a soil, utilized in this analysis. Horizontal boundary
traditional superposition of elastic static node displacement, velocity, and acceleration
and dynamic solutions is no longer valid. The histories were computed. A static analysis
initial static stress state determines the was performed using the mesh shown in
ambient conditions for the dynamic loading. Figure 11. Gravity loading was used to apply
Consider a building sitting on a soil field. the structure and soil gravity loading to the
The stress state from the structure load soil. Figure 12 shows the static response.
imposes a different stress state on the soil Time functions were constructed using the ver-
from that of the free field. One approach is tical mesh boundary displacements from the
to calculate a uniform gravity on the soil static analysis and the horizontal dynamic
field then "birth" the structure (have portions shaking displacement of the soil column. These
of the structure enter the calculation at dif- displacement functions were applied to drive
ferent time steps). This stress state would the horizontal and vertical mesh boundaries,
then be the start for the dynamic solution. first repeating the "static analysis" using
The CAP75 model has a gravity pressure, which large time steps then reetarting with a smaller
is essentially a shift along the J ais, dynamic time increment. Results are shown in

This loads the element hydrostatically Figure 13. The soil column response indicates
rather than with an appropriate K value for some amplification of the base motion. There
horizontal stress. To allow for I simplified is considerable reduction of motion under the
starting point, the basic material model was structure as shown by the time histories
modified to allow both a gravity shift and a beneath the structure when compared with free-
X 0 1.0 condition to be represented. This field response. This is shown clearly by the
ilposed a nonzero value of J , which required contour plots of acceleration and velocity
that the cap be moved outwari such that the which give vector magnitudes at a particular
starting point would be on the failure surface. time. The results shown are for the conditions

The ADINA restart option was used for of this problem and are not meantto express
dynamic analysis; it is not possible to first general conclusions.
oerfrm a vertical gravity analysis and then a
horizontal shaking analysis since the boundary NONLINEAR ANALYSIS
conditions would be different. Results from a
typical static gravity analysis can be used as The previous analysis was repeated using
the basis for material property shift, then the nonlinear CATS material model and Cook's
the static structure stresses and boundiry sand properties. The nonlinear results show
displacement can be calculated. These static faster propagation and higher load levels.
(structure load) displacements are reapplied This is a result of higher modulus values at
at prescribed boundaries, repeating the static depth than were estimated by the elastic
load case. The solution is then restarted, unslysis.
applying horizontal boundary displacements The static stress results for the mesh
based on the dynamic shaking. (Figure I1) are shown in Figure 14, The

To sumarie the procedure: results are similar to the results of the elas-
tic analysis. The overall levels of motion in

1. Calculate gravity shift. the inelastic analysis are greater than those
of the elastic analysis. The same base dis-

2. Perform static analysis of soil and placment function was used for both. Yielding
structure, evaluating structure in the nonlinear soil increased motons. Now-
weight displacements. Boundary con- ever, attentuatlon of motion was noted beneath
ditions are horizontally restrained the structure relative to the free field as
and vertically free. Detemine was noted in the elastic analysis. Figure 15
boundary displacements. shows the response at step 50, t a 1.25 seconds.

Since the response is shown for a specific
3. Perform a dynamic soil columm study time sd tue nonlinear characteristics cause

to evaluate dynamic boundary horizon- the time histories to differ from the elastic
tal displacements from shaking. analysis, a direct comparison of stress states

at that anstawt in time is not possible.
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The random cyclic loading is a severe enced by localized high spots, and acceleration
test of the CAP model, having loading and result# should not be expected unless the time
unloading occurring both spatially in nearby step is reduced to track the wave propagatio*
sections of the mesh And In time with rapid rather than stress response. This is clearly-
reversals, These cause suddmn chanpes in the evident from satisfactory acceleration perfor-
stiffness of the elements. Often the state (if mance in the elastic analysis, which did not
stress my vary from the teasion cutoff region, have rapid stiffness variation.
to cap region, to enveinpe region in a
relatively small distance or time. This is CONCLUSION
particularly true beneath the outer edge of
the 6tructure w.here high shears are present. A detailed study has been made evaluating
Rodling of the structure causes uplift and soil material models. A test case of a #is-
reduced stiffness of the soil. This greatly plified structure on a soil field wan studied.
eXaggerates the Accellration. Pockets of high The analyst*s shows it is feasible to excite A
wocleration occur. This problem can be car- &oil column using base masses and a force/
rected by reducing the time step and solving acceleration function; this motion can then be
the stave yro.)sgtton problem more exactly. transferred to a large soil mesh through a
However, from An eungineering point of view, displacement function, Mtesh size and time
this is not the intent of the analysis, and step must be selected to ensure adequate pre-
tbe reduced titse step would economically pre- servation of the input motion. The material
clude an analysit of long duration. Displace- yielding and rapid changes in stiffness cause
.11nt and stresses are not significantly localized pockets of high acceleration. Static
affected by the acceleration sensitivity to and dynamic loadings were satisfactorily
changes in stiffnoes. Acceleration sp~ttial imposed upon the mesh through utilization of'
plots are not accurate. since thoy are influ- static, quasi-static, and dynamic restartu.
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FINITE ELEMENTS FOR INITIAL VALUE PROBLEMS IN DYNAMICS

T. E. Sinkins, Ph.D.
U.S. Army Armament Research and Development Command

Large Caliber Weapon Systems Laboratory
Benet Weapons Laboratory
Watervliet, NY 12189

The complete dynamic analysis of shock and vibration problems usually requires
the solution of one or more hyperbolic partial differential equations involv-
ing space and time as independent variables. Many times a numerical solution
is attempted by first eliminating the spatial dependency through the substitu-
tion of Ritz type approximations into a variational formulation of the prob-
lem, thus generating a corresponding set of ordinary differential equations in
time, i.e., the Euler-Lagrange equations for the problem. The solution of
these equations can sometimes be tedious owing to the hyperbolic nature of the
problem. Instability may result unless the time step is sufficiently small

and for problems involving rapidly changing loads or material properties, the
smallness of the time step required may lead to unace-eptably long computation
time. When true shock conditions are encountered, there way result no solu-
tion at all. For such problems advantage wmy be gained by continuing the
variational formulation into the time domain, dispensing altogether with the
Euler-Lagrange equations and the need to solve them. While there exists a
considerable choice of variational principles for eliminating the space
variables (virtual work, minimum potential energy, etc.), the only physically
based variational principle extending to the time domain is Hamilton's
principle which, however, Is unsuitable for the solution of initial-value
problems in dynamics because of constraints placed on the variational
quantities at the end points of the interval of tine-integration. A way
around this restriction to to mploy instead samilton's Law of Varying Action
which only becoe.s Hamilton's principle if the end point constraints are
applied. Unlike Hamilton's principle, the Law of Varying Action is not a true
variational principle in the sne of the calculus of variations, yet this in
no way impedes its application to problems in dynamics. When piecewise basis
functions (finite-elements) are employed as Ritz-spproxiattons in the Lau of
Varying Action, however, convergence to the proper solution does not follow in
a straightforward manner. The difficulties encoontered and their logical
resolution leading to a workable finite element Cpwsulation for the time
domain i the main topic of thL paper. A few demonstrations of the utility
of finite elements in time are aloo given.

I TMODUCTION are others, such as Hailton's principle which
do qualify as true variational principles. Yet

According to Finlayson and Seriven III it it i d'Alembert's Principle which forts a basis
iox nt variational notation or even the concept for all analyt.al mechanics 121 and it follows,
of a varted path which is the key criterion of a therefore, that the vanishing of the first vari-
trut: variational 'principle' but rather the ation of aom functional is not a necessary con-
exi4t@tce of a functional which when varied and dittion for the scaler formulation of any mechan-
act Lh zero, generates the governing OqUation. its problem - however elegant or convenient this
and constraints for a given class of problems, may be, Whether a true variational principle or
In this #sns, certain fundamental principles of a more fundamental variational statement is used
nctvicnie much am d'Alebsrt'a Principle do not to obtain a numerical solution to a dynieics
troly qu4lify AN variatiolal ptnciples6 That problem, an importait araument is that well
is to say, the*e wchanical principles or 'laws' established laws s;h a dAlebert'e Principle
canniot he posd as central problems of the or true principes such "- Ilamilton's, are phys-
c calculus of variations. on the other haad there ical)y bued wd avoid the arbitrariness iher-
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ent in general weighted residual methods and solve problems in continuum mechanics. Even
contrived variational principles. Moreover, though the principal motivation for their use
only those variational principles which are also has been the need to handle complicated boundary
maximum or minimum principles appear to offer shapes (non-existent in the time domain) time-
any special advantage for obtaining approximate finite elements are also well suited to handle
solutions - mainly through their ability to sudden changes in load functions, extending the
provide bounds on the variational integral, interval of solution indefinitely without
Even then the system treated must be positive- restart, and providing great detail to the solu-
definite and the upper and lower bounds are tion in any subinterval. Two examples which
often too far apart to be of practical value, exploit the advantages afforded by the finite-
In brief, there seems to be little point in con- element discretization of time are given in
triving a variational principle in preference to Section 5.
a variational law of mechanics despite the mere
primitive status of the latter. Indeed the many Since 1977, several investigators have pub-
solutions to initial value dynamics problems lications dealing with the use of finite elements
achieved by C. Bailey [31 by applying the Ritz to modify or replace conventional integration
method to Hamilton's 'law of varying action' methods. Hughes and Liu [7], and Belytschko and
demonstrate the usefulness of variational Mullen [81 are notable examples. One also notes
formulations not qualifying as 'principles'. the work of Serbin, Dougalis, and Gunzberger who
Thus motivated, the work herein explains the have recently begun a computational and theoreti-
numerical difficulties encountered in attempting cal study of finite element methods for hyperbo-
to generalize Bailey's formulations according to lic equations [91. Thus despite the reservations

* the method of finite elements, expressed by Zienkiewicz, the extension of the
finite element method to the solution of tran-

Zienkiewica [41 has expressed serious sient field problems is well motivated and was
reservations concerning the use of finite first reported by Argyris and Sharpf [101, later
elements in the time domain. Indeed, when the by Fried [111, and most recently by Baruch and
functions involved are sufficiently smooth, the Riff [12,13]. All of these works attempt to use
number of time steps required to integrate a set Hamilton's principle as a starting point for the
of ordinary differential equations may not be finite element formulation of initial value prob-

* great and it may require roughly as many finite lems. As will be pointed out in the following
elements to produce a solution of comparable section, this cannot be accomplished without some
accuracy. In view of the increased storage logical inconsistency when bringing the initial
required, the use of time-finite elements to data into the formulation. In the sequel it will
solve sucl systems is questionable, There are be shown that the use of Hamilton's 'law', rather
fainy other eases, however, in which conventional than Hamilton's 'principle', makes possible the
.laorithi for step-by-step integration may call logical incorporation of the initial conditions
for a very large number of time steps. This is into the variational formulation.
especially true when dealing with the
(hypertolic) equations of structural dynauics 2. HAMllTON'S PRINCIPLE -
should the excitation and/or material properties A CONST.AINED VARIATIONAL, PRINCIPLZ
change rapidly in time. A physically based
variational method, with itq inherent stability The following equation is known as the
and physical origin, my lower the computational generalized principle of d'Alemburt (1411
effort considerably. N

S(Tj-Pi),6ri =0 (') - ;/l (1)
The many solutions achioved by C. ailey i . .

hora generated by the Rite method 151 using a
pow@r curieq approximation in wlich globally This fquation applies to any system of

* defined polyuoltls dre the basis functions. N-partieles, the ith particle having a position
Ultimately tLe length of interval over which It, a aauentu* Ji, and subject to.a resultant
solutions nAy be generated as wll a the detail applied force Vi.
to ho provided in any subinterval will he
li-mitd by tl deogree of polynomial used 4s a Under the assumption that the virtujal work
havit. Thu pitfalls of using hiSher powered of the applied forces is derivable fro a calr
polynomtAl are well documented i6l and V, a time integration of equation (1) leds to

, partially aecount for LIM us of locally "amiltu"'s law of varying action 15,.1611
(piecewis) defined basis fftitOU (finite

-eleants) to solve problom io many branches of t2 N tZ
A#th:tnttcAl physts. The *ttraordinary 6f ('TV)dt - a ert6ri] 0 (2a)

.ace.uricy 4nd simplicity of procedure attatned by t1  it t|
*atiy, owavar, are net to be undorstated.

T t the kinetic energy of the cyst..
Apart from Avoiding the probhl# whtch caCn

artso whon hihor jorud polynomials are
employd a s basis function,, finite element T 1/2 miri.ri
formulattnn have olther advatiAot when weed to I

40

04



and V is the potential energy of the forces applied to either of equations (2) leads to a
impressed on the N-particles. The existence of scalar relation of the form:
V makes little difference as far as numerical
calculations are concerned. In the event V does 6uT[(KB)UF] = 0 (4)
not exist, equation (2a) can be written:

whereas for equation (3):
-2 N . t2

f (6T+6W)dt - I mr i * 6rj] P 0 (2b) SUTEKU-F] 0 (5)
tI i-i ti

As yet, none of the Ui are specified so that all
The bar signifies that in general the virtual of the SUi are arbitrary quantities. Equations
work of the applied forces cannot be derived (4) and (5) result from the Ritz procedure
from any scalar function of the generalized whereby the displacement function u(t) is
coordinates. Either of equations (2) can be approximated as:
used as a basis for a Ritz approximation to a
dynamics problem. u(t) u aT(t)U (6)

If the ji are constrained to take on The relation (6) applies to the entire interval
specified values at tI and t2, then 6,i(t I) and of solution when globally defined basis func-
6ri(t2) vanish in equation (2a)iand the result tions are used or to a particular subinterval
is Hamilton's principle: thereof when piecewise functions (finite ele-

ments) are employed. When a global power series
t2( approximation is used U is a vector of general-

5f (T-V)dt - 0 (3) ized coordinates, the first two of which are
t identifiable as u(tl) and (tl). The 'shape

function', at), in this case is simply:
Since the vanishing of the displacement

variations at the end points is not the only aT(t) - 1l,t,t 2 ,...-tn] , tl < t ( t2 (7)
means by which the partial sum in equation (2a)
may vanish, equation (3) may not always repre- If piecewise cubic Hermite polynomials are used
sent Hamilton's principle in the strict sense. instead, the components of V are local values of
Should equation (3) be used as a basis for the u and Zt defined at the endpoints of a particular
numerical solution of a dynamics problem without subinterval, and
the requirement that all of the 6Sl vanish at t1
or t2, zero momentum conditions will prevail aT (t) - i2-3-3ry+l, h(03-2r2+r),
initod as natural boundary conditions on those -

displacements whose variations are free. This 372-21 3 , h(M3- 2)) (8)
aspect of variational principles is covered very
clearly in many references (cf. rof. 1171). An where T • tlh, h being the length of the partic-
observation to be made here is that equation (3) ular subinterval. Referring first to equation
corresponds to a system of boundary value prob- (5), it is noted that 5 should tend in the limit
l m - not initial value problems - since the to be singular of degeneracy one if the system

* partial sum can only vanish through boundary is semi-definite and nonsingular fqr pdositive-
(endpoint) constraints either natural or definite systems. For example, the degoneracy
impogad. Thus equation (3) cannot, with co*- of I for the simplest semi-definite system
plote log8c, be used.to formulate Any system of (mU-0) represents the possibility that neither
initial value problems of dymaics. The Intro- u(ti ) or u(t2) has been specified. That is, if
duetton of initial data has in fact always been neiLhar 6u(tj) or 8u(t2) vanishea, then M4 must
the obstacle preventing the use of HAmilton's vanish'at both endpoints as natural boundary
principle for the variational formulation of conditions. Under these conditions u(t) may
initial value problems 118,191. only be determined to within an arbitrary con-

stant. Thus in equation (5) 5, if singular, my
Sines equation (3) is a valid physical only be reduced to a nonsingular matrix by spec-

stgtoment of mechanics only when the boundary ifying values for UCt I) and/or u(t 2 ) sao that the
constraints are such that the partial et variations of one or both of theme quntities
vanishes, it is proper to roter to this equation vanish. As we are only interested In initial
4§ s a 'constrained variational principle' as value problems, the essonce of the discussion
opposed to equations (2) which are unconstrainod which follows is not changed if, it is hence-
variational lave of Mehanics, suitable for the forth asstmd that u(ti) his been pocifted.
application of arbitrary constraint conditions. This ts known as a 'geometric' or 'iomAtd' con-

straint. lecause 6ut I du(tI) 0 multipltes
3a GWA8L, A4 PIRChIIISK XI t APPROX144TIONS the first ow of K in equ#tie-4 (s), this row is

effectively removed from the .ormulation. ince
Equations (2) and (3) differ only in the the remaining variations are arhitrary the final

prosonce or absence of boundary terms. For the set of equations to be solved is then:
caso of A si8l particle (Mal) having only one
dogroa of fredom u(t), the Kits procedure when
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n affects many rows of K. When locally defined
KijUj - Fi - KijUlJ , i = 2,3...n (9) Hermite polynomials are used, however, B is very

J-2 sparse &nd in fact contains only two non-zero
zomponenLs. T4oreover, one of these appears in

where Ul = u(tI) is the specified value and a x the first row of B which is deleted when u(tl)
n is the dimension of K. Whether these equa- is specified. In this case freeing the natural
tions derive from a global power series approxi- boundary condition and introducing a degeneracy
mation or from one based on finite elements, one depends on the subtraction from a single compo-
may readily verify that as n is increased their nent of K. Even though both effects may actu-
solutions do indeed converge to the exact solu- ally be produced in the limit as the number of
tion of the corresponding two point time- elements becomes infinite, the degree to which
boundary value problem. That is, when 'ut2) is they are approximated for any finite number of
also specified and the corresponding 6U quantity elements is evidently insufficient and the solu-
set to zero, equation (9) converges to the tions do not converge to the correct result.
proper solution. Should one wish a solution to This is exemplified in Figure 1. The problem
an initial value problem, however, equation (4) represented is that of a free oscillator of
must be used instead of equation (5). In this unit mass and stiffness (a positive-definite
case, specifying values for u(tl) and u(tI) system), subject to the prescribed initial
cause 6U1 and 6U2 to vanish thereby deleting the constraints of zero displacement and unit
first two equations of this set. The resulting velocity. For this case, equation (2a) reads:
system of equations to be solved is thus: f. 4-u u)dt - i'aju - 0 (11)

n00
1 (Kij-Bij)Uj - Fi - (Ki1-Bil1U1-(Ki2-Bi2)U2 , or simply,
-3

3,4,...,n (10) f (u+u)budt - 0 I (12)
It 0

In all cases attempted to date, solutions to
equations tlO) have been observed to converge to The finite element results of Figure 1 were
the exact solution if these equations are obtained using piecewise cubic Hermits poly-
derived using a global power series approxima- nomials. (Higher ordered Hermits polynomials
tion but not if they are formulated by finite yield similar results.) It to observed that the
elements. An example of this anomaly vll be solutions tend to diminish froa the exact solu-
given in the next section. As the only differ- tion, sin(t), as the number of elements is
ence between equations (4) and (5) ir a subtrac- increased. Using only two finite elements the
tion of 5 in the former, and in as much " con- finite element matrix formulation (equation (4))
vergenca is achieved when equation (4) darivea for this problem is as followst
from a power series approximation, one suspects
that it is the finite element representation of
the matrix I which is *sehow at fault. It is
therefore of intoret to know In more detail
Jost how the subtraction of I i supelve to
affect the coefficient aatri* of the system.

In contrast to the matrix 6, the matrix K-1 a-
must tend to be singular of degeneracy two - no
constraints having been patued a priori. Thus .6
when u t ) is specified and the first row of K-h
is deleted, the raininS equations *fill mus
postes one degeneracy in hm limit as the
number of basis lunctions becomes infinite.
Thus the effect of subtracting I must be to free
the natural boundary condition at t2 4inherent
in equation (5)) and to introduce a degeneracy.
This remaining degeneracy can only ba removed by
specifying the value of u(t) at a time other A. .
that t1 or a value for t, resulting in the P
deletion of another row of -B.

4. A40WIOUS MHAAW & VINITK SAHCNT
FOMILATIONS

Vig. - Diversei.t finite element solutions to
The degree to which the subtracttn of the free ocilliator problem

matrix t from K can both free the natural bound- =

ary condition at t2 a introduce a degeneracy oTe' at Hq.1 wuld also resuit from
differs tith the type of approximation employed. applieation of the GalerKin procedure, implyi g
Vhen global power "rste approximations are used tbAt the fleerkin mthod has oie physical
the matrix I# quite full and the subtractioa justificatioo for proble m in dymice.
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0 - 6uT[K-:B]U - [6U1 6U2 6U3 6U4 6U5 6U61

k1l k12 k13  14 0 0 0 -1 00 00 1

k2 1 k22  k23  k24  0 0 0 0 0 0 0 0 U2

k31  k32 k33+kll k34+k12 k13  k14  0 0 0 0 0 0 U3
(13)

k41 k42  k43+k21 k44+k22  k23  k24 0 0 0 0 0 0 U4

0 0 k31 k32 k33 k34 0 0 0 0 0 1 US

0 0 k~1  k42 k43 k44 0 0 00 00 U

Using expression (8), the element matrix k is
calculated in terms of the element length h ae:

h * 6 13h 1 lih 2  9h 6 13h Z  1
k -f (aT-anT)dt - +-
" o. . Sh 35 10 210 70 sh 420 10

2h h3  130 I h3  h

15 105 420 10 140 30

6 13h 11h 2  I
-SY , " -- - ----

5h 35 210 10

2h h3

15 105 -

Since Ul to specified the first tow of Is - i Further calculattons show that if.the interval
deleted. As tho subtraction of J only effects of solution remains fixed and the number of
one row of the reduced system, the only way in finite elements is allotd to increase, closer
which a degeneracy can be introduced is for the agreement between the next to last row vector
next to last row to join the apace defined by and its projection is observed but thio is not
the rows remaining. Thus rowse two Lhrot-gh six accompanied by a convergence of the solution
in equation (13) ideally would become linearly vector toward the eact solution to the problem.
dependent. This dependency mong row mwet be While the exact reasons for this instability are.
quite enoral as specification of any other of not known It is apparent that the rate at which
the V must remove it. the mitt to last row tens to become dependent

is important, It st&s to reason, therefore,
One suspects that a simple subtraction of that should one invoke the ltmit condition

unity frot X56 in eqeation (13) may not do the vithout actuqlly p:oceet to the limit, a.
best job of introducing a degeneracy or oi Convrgent sequence may result and ioeed this
treeing the mtural bcunetry codition at t2 - proves t- be the tase.
it. One can gain "oe idea of I" 'close' this
subtraction brils the fifth raw into the space Axxor~tt that the tow vectors two through
of roaws 2,1,4 and 6 by comparing it with its Six are tearty dependent allows the fifth row
projection onto this space. Sulsettiuting i/2 (equation) of equattons (13) to be replaced by a
for h, the fifth roe of equation (it) *alculitee linear combination of L-h others. For example,
to bet let

!5 02!2 4 ))- 4k 46 (4
(0.0 0.0 -0.96590326 -0.1174, 794 $ §3 3 + O44 + a4.4 (I4)

0.16505"1- -0,9707551751 whtro R denotes the Ith row of - .. After
ttep8ing the econd initial constraint, Ul - ,16

4hctea its projection isa equtt(ons (13) can be wuittett.

11.4%7618,-3 -d.s976,9 - -.1.97449633S 6U3k3 • 0. QR4 * * 4Us(.t2 t 6 )
-0.,*438083$ 0.172642875 -0.961763801

J .* ++6M 6 .u-o (U5)
-4



Since all variations in equation (15) are displacement and velocity are specified. Fol-
arbitrary, there results the following system of lowing this procedure, convergent solutions are
equations for solution: then obtained for the problem of the free oscil-

lator considered in this section. These results
0 -=F3 - U - R2 • U - R4 • U - R6 • U (16) are presented in Table 1 for formulations based

on one, two, and six finite elements.
Thus the second equation (row) which was origi-
nally deleted through the specification of U2 , Note that the replacement of the fifth row
is brought back into the formulation in place of of JE-B1 by a linear combination of rows two,
the fifth in a logical and consistent manner, three, four, and six in accordance with equation
Equations (16) are the same set as would result (14) does not have to be carried out in practice
from following the procedure of Argyris and when seeking the solution to the homogeneous
Scharpf. These authors, however, started with problem (I - 2) as this procedure is entirely
Hamilton's principle whi,!h requires that 6U1 - equivalent to replacing the fifth equation by
6U5 - 0. This would delete the first and fifth the second. This equivalence, in general, does
equations from the set. Further specification not apply to the nonhomogeneous problem (F *
of U2 should then delete the second equation as 0)however, aince F2 would then replace F5. In
well, overspecifying the problem. Argyris and general, F5 * eZF2 + *3F3 + a4F4 + a6F6 except
Scharpf 1201 allow this equation to remain with- when the original load function f(t) is a
out justification. Moreover, no explanation is constant. Nevertheless, the replacement of the
given an to why 6U5 should vanish as US is never next to last equation by the 2nd will lead to
specified in an initial value problem, All of convergent solutions in many cases. In some
these inconsistencies derive from the fact that very Important cases however, such as when F2 is
Hamilton's principle corresponds only to bound- zero and Fn.1 is not, the procedure will fail,
ary value problems - never to initial value (For example f(t) might be concentrated at an

... problems, end point of the time interval,) Thus to be
perfectly consistent with equations (2) the

In summary, the work of this section shows substitution of the second row for the next to
that Hamilton's law of varying action, unlike last should be confined to the matrix t - ]. In
Hamilton's principle, is an unconstrained varta- this case the at must be determined and will
tional statement p.tiitting the Introduction of figure in the final solution. Since the el are
arbitrary constr.ints including data ordinarily easily determined from the solution vector to
given for initial vL lua problems. When piece- the homogeneous problem these quantities are
wise Hermito cubic polynomials are used as a readily available. the proper substitution for
basis for a finite element formulation, the the fifth equation of the nonhomogeneous
singular state of the resulting coefficient counterpart of equation (13) can te shown to be
matrix in the limit justiftes retention of the
second equation of the system in preference to "2 (S'Q-F3-4F4-Q16-F6)/%2
the next to lAst when typical initial valuo for

in place of the original equation S V ) w .

TARLE 1. SOLUTIONS TO YKR OSCILIATOR PftOBLE (DtSPLACvaNT/VsLoCaTY)
04

Exact
fit/W One IPlenent Two VHiements Six filaemntsHoln

0.0A 0.0 0.0 5 0.

, 0.54997000 0,5
0,86602547 .0095602" !

@1Nl I 0.q 171I29' 0,9956026. t i +-.

4 O.MV~96 .A6602541
•-0.499199948 -0.5

-0.4602SW) 0*86602$41

,-1.00079414 -1.r0o4N0946 -0.W99919 -15)
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5. APPLICATIONS
TABLE 3. SOLUTION TO u + u = 6(t-0.4)

Example 1. Linenr Oscillator Subjected to 0 4 t 4 1
Discontinuous Forces

A linear oscillator of unit mass and Computed Exact
stiffness is subjected to a force f(t). Two t Displacement Displacement
cases are considered:

(a) f(t) - H(t-1/2) 0.0 0.0* 0.0
0.1 0.1* 0.099833416

(b) f(t) S 6(t-0.4) 0.2 0.199001664 0.19866933
0.3 0.2960t6622 0.295520213

H and 6 are the Heaviside and Dirac functions 0.4 0.390076343 0.38941834
respectively and for either of these cases 0.5 0.58007539 0.57925896
equation (2) reads: 0.6 0.76428335 0.76331182

0.7 0.94086118 3.93973791
.t2 J t2  0.8 1.10804607 1.10677443

f {u6u + (f(t)-u)6u}dt - udu I S 0 0.9 1.26416892 1.26275246
tt 1.0 140767112 1.40611348

For case (a) four finite elements of equal *Iaposed- values.
length are used to approximate u(t) over the
solution interval (0,2). The element polynomial Example 2. Response of a Beam to a Moving
shape function is Hermite cubic and an element Mass
length of one half takes advantage of the
specific shape of the forcing function. Table 2 A concentrated mass is. assumed to move at
compares the calculated displacements and constant velocity v along the length of a
velocities with those computed from the exact uniform Euler been, simply supported at each of
solution, its ends and having car* displacement and

velocity at t S 0. Under suitable definitions
for k and a, the representative equations may be
written (21J:

TABLE 2. SOLUTION TO u + u a R(t-1/2)
0 4 t 4 2.0

puted - - ... Exact

t Die placement Velocity Displacement Velocity

0.0 0.0* 1.0* 0.0 1.0
0.5 0.47932149 0.87708716 .0,47942555 0,77582565
1.O 0,96370936 1.0199163 0,96388844 1.01972786
1.5 1,45700388 091238744 1.45719267 0,91220819
2.0 1.81836447 0.5805616 1183856024 0.58134814

Imposed v;iue.

In case (b) a discontinuity in velocity can
be expected in the solution. As the use of 01 + ky + f(,t&) a 0
cubic shape funct nns enforce& continuity of
velocity throughout, a better solution eight be y(Ot) • y"(O,t) • y(l,t) * y(1,t)
expected when linear shape functions are
employed. Table I compares the exact solution y(x#fl * y(.00) " ( (IS)
on the interval (0,) with that obtained eci
ten such eleents of equal le nth. Te function t(xt) coatats, of & #us of

inertial terts.
The two problis considered in. this example

demonstrate the manner in uhich the type of f(%,t) e(y + 2v?' + d + vly")8(x-vt) (19)
eleent and its points of attachment ((.e, the
'nodes' or 'grid points') my be varied to euit where g denotes the gravitattonal constant and T
specified transient evets is the Oret unction. This problem is porticu-

larly Intereeting in that the conventtonal use
of piecewise cubic shape functions to dteretis
the space variable only, introtdues forces hich
are d#scontiAuas functions of LiVe into the
reeulti0&ordLnary differenttat eqUAtioNS.
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These discontinuities are associated with the cl a( 1i) aT(ti)x.vt
beam curvature load term appearing in the
expression (19). Since the piecewise cubic C2 2va(4i)a',(.,i)Ix-vt (22)
polynomials are discontinuous in the second - - -

derivative at the element attachments, the term C3 " v2 a(ti)a"T( i)Ixvt
mv2y"6(x-vt) - when multiplied by the shape " -

function a(x) and integrated over the element It is noted that c3 will be discontinuous aLi.
length - will produce functions of time which = 0 and &i 1 1. The function 4 takes on the
are discontinuous whenever the moving mass valite of m, only when the concentrated mass liev
arrives at any point of attachment. Clearly within the ith element, otherwise 4 is zero.
these discontinuities have nothing to do with
the physics of the problem and are certain to The element equations (20) are combined in
invite trouble when one attempts to numerically the usual way to form N equations of sntion for
integrate the time dependent equations via the combined structure. Symbolically
established algorir.ims. It is possible, of
course, to use shape kunctions of higher degree 1(t)U + C(t)U + K(t)U - F(L) (23)

to discretize the space variable thus eliminat- .
ing the disconinuities at the onset but this is Each of the matrices in equatior, (23) can be
hardly consistent with the finite element method viewed as a conventional matrix of constant
which should permit the use of even linear shape coefficients plus a time variant set of
functions if need be. One is tempted to somehow components which are active in a band along its
'smooth' these discontinuities, yet this should main diagonal as the moving mass traverses the
not he done in a purely arbitrary fashion. beam in time. For this system of equations
Integrating the effects of these forces through- Hamilton's law of varyiag action can be written:
out the time domain through the use of

O Hamilton's law of varying action provides a N N t2  U
consistent way to handle this problem. I I (6UIHjj + 6Ui((Ijj-Cij)Uj-KijUj +

11i-i j t1
While it is possible to handle the space t2

and Lime ftnite element discratiations in one 1l)dt - 6UIjUjI w 0 (24)
operation, the amount of computation and tj
computer programming tend to become inordinately
large. Moreover, there exist any numbqr of It is interestina to obverve the accuracy
finite element cod*s (e.g. NASTRAN) which can of solution which can be obtained from eqetiart
quickly accomplish much of the space (£24 using only two finite elawents in space and
dimeretization. It seems more efficieAt, two in time. . foaflulation using two elements
therefore, to apply the finite element method in in spae results in a systeIm of Mn4 ordinary
two steps, by first discretising the space differential equations in time once the geomet-
variable and that applying Hamilton's law to the tie support tonstraints have been applied. A
resulting Pyatem of ordinary differential two element formulation of those four equations
equations in time. 'or the ease at hand, thu for the time domain, followed by the application
4ifferential equations governing the motion 01 of all tittiol constraints tn the unner sa-
the Ith bea elesent turn out to but ied in Section 4, gives a final systen of six-

teen linear algebrice equations for solution.
(p + oac)u 4' M2u + Figure 2 compares this solution with the expoert-

- " -ietal. results of Ayre, Jacobsen, and Hsu 1221
(20) aml a conventional finite element solution using

(q + 843)u +eg(vt)- 0 three elements in the space domain followed by a
tim-intogration of the equations (28) by

u #I an tare proportional to the usual eAss and flaming' predictor-corrector algorithm 123.
.stiffness trtcoe for beam elements and have the mess velocity in this case is v ve12,

been evaluated mny tiaes in the literature. Where v* is the lowet v6locity to cause reo-
tler* all of the be& elements are of the same name when the load is a lovi weight o"Iy and
length t, and the displacement within the ith the magnittude. isgn8ad to the moving eie s o I
e 0leent Is interpolted from 0(t), a veCtor of of the total Vass Of the bee. (Other pare'-
ed poitt diaplaemets and velocities, i.e., etrie values are the aeo as those tn referenes

1221w) The dtoplacements have been artallued
*- y(u,t) - aT(u(t) vith respect to the wit" defletiotn prodoced

(-21 Itf the weight was applied statically at midepsn
l (21) and.L is the total beam length, tn particular

on nos that the convAntional soluttO
Uheto t() x s/I 4t-1), a oinat to"t obtained vie three finite elements in space
element caordi.n&. only, produes no-physical discontinuities in

the elope of the solution tutv at vtL 0 1/).

1T0 t matrices in equations (20) correspond 2/34 (Me Continuous data for generating this
to traftsvto , ruriolis, and centtrtfulal curve L obtain" by interpolatig the solution
aelorations respectivaly and Are deftined for tO equtitO (2)) using equation (2).) Th4se
tht jth 0emaent As follaowt diaonattttes cause greatly leoeatsd COW-
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STRUCTURAL DYNAMICS

A Procedure for Designins Overdamped Lumped Parameter Systems

Daniel 3. Inman
Department of Mechanical and Aerospace Engineering

State University of New York at Buffalo
Buffalo, NY 14260

Albert N. Andry, Jr.
Locheed California Company
Burbank, Califoruik 93520

The concept of overdamping common to a single degree of freedom
damped linear system is extended to multidegree of freedom damped linear
systems. Inequalities involving the mass, damping and stiffness
parameters are derived to form a system with a fra . response which is
overdamped in each mode. A general method for designing syxtema to be
overdanped in each mode is indicated. The method is applied to a tour
degree of freedom model of a Darrieus wind turbine and a design solution
for overdamping is presented.

Introduction transient response will be overdamped in eachmode. The inequalities are stated directly in

It is often desired to limit the terms of the Sas, damping and stiffness
oscillation in mechanical systems by using the constants of the system.
effects of viscous dsping. In a linear one
degree of freedom spring, mass and dashpot The exact relations for overdampinA are
arrangeoent, the selection of the proper values derived for a two degree of freedom system. Once
of mass stiffness and damping constants to the design criterion is satisfied the results
produce an overdamped or criticully damped are used to calculate the eigenvotuee of the
syxtem is trivial. The solution of a constant system to illustrate that the designed system ts
coefficient second order ordinary differential in fact overdampid is such mode. The design of
equation shows that if c 12 ik, where a, o and a specific four degree of freedom nodel of a
k are the mass, damping and stiffss.. drivottain Is also gives to illustrate the prob-
coefficients respeetively, then the system will less encountered in more practical design situs-
not oscillate. The work presented here yields tions. The generaliastion to a degree@ of
similar inequalities for nonoscillation of freedom it obvious from these exaisple.8
multiple degreo of freedom systems.

The systems onsoiderd here ar those that
can be modeled by the matrix differential In [11 it is shown that if, in addition to
equation the restrictions listed above, the maticaes N, C

ad I are sob that the matrix
"(t) + C(t) + t) - 0 at)

where s(t) is an a-dimensionsal vstor of
disploements ad N C &ad 9 are tan symmetric is positive detaite then all of the Sigovluas8
matrices containiag the physical parameters Of of (1) will be aegative real numbers aid saek
mass, damping sod etiffass constants. It is node of (1) Will be ovedamped. Bias X is
further assumed that N and I are positive symmetric and positive definite, it pogMsses a
definite &ad that C Is at least positive unique posi% we definite squate toot, N with
semidafinite, The design procedure presented inverse a- Using tho tzanslotmntics,
here takes Advantage of newly derived motris .s/a
conditions I] to jenerate na-linearalsebrait Y # y
inequalities is the physical parameters of the
system. When the peameters ere chosen to equation (i) is tednoed to
satisfy thoes inequalities, the resalt..g (1)
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where A =-l/2CM- l/2 and B = -112NM-1I2. The "2 0 o21 k2
condition for overdamping IN aoh mode for (2) (A-4Bi 2 2 = - + - - 4
becomes that the matrix A-2B must be positive 2  Mlm 2  m2 :
definite. Since the square root of a matrix is,
in general, harder to compute than the square of It is desired to choose ui , ci and kI so that
a matrix, it is tempting to use the matrix As-4B the matrix A'-4B is positive definite. A
in design work. Fortunately, it has been shown necessary and sufficient condition for a matrix

[3] thasIf A2-4B is positive definite, then so D to be positive definite is for each of its
is A-2B . Thus, requiring the, matrix Az-4B to leading principal minors to be positive. In
be positive definite insures that each mode of- :.particular, a real 2x2 atrix D is positive
(2) will be decaying ton-osoillating. :" definite if and only if
(overdamped) function of time.

If it is desired to make the solution of
(2) overdamped in each mode for arbitrary ini- and
tial conditions, then it suffices to choose the
phytical constants mi, oi and ki so that'Al-4B DID22 D12D21 > 0'
is positive definite. - 0

Applying these iequaiities to (AS-4B) yields

I Dea&ol gL Froodo (01+92) 022 k I+k2 -

+ ) 4- - (3)
To illustrate the above ideas consider the *l' im1 2 N 1

two mass arrangement in Fig. 1. The appropriate
m utr i e e s f o r t h e e q u a t i o n s o f n o t i o n a r e : F -( 01 + 02 ) 4 a; $ k I + k 2 1

¢ H~~F~ - ol 0r1° k aen

2 L- 2  0 023
F- (01+*2)3 + -;;1 4L

-- i ki+k2 "ki ft2] '

~~~~~a -8 ,t-"ss° 2'

C 2If the parameters si, oi and ki are now ohosen
to satisfy (3) (along with the physical
constraints that miD oi &ad ki are all positiv)

the& (1) will be overdamped in sech mode &ad
will not oscillate when perturbed from

k__ Iequilibrium. In total the sis parameters nuat
satisfy eight inequalities (,4.

The approach aakes here was to *imply fix
the values of mi and ki and choose values of o;

Fig. I Two.degree of feedom syt*., to satisty (3). For example the values

Us_ matria 9 I: a m m2 .l

0 at4 camS

A UI ~ 0 1 h1 -

0emoting the i hlemiut Of a g0sere matri A satisfy (3). In order to verify that this set
byAj4 sad tOlieg the natria , 4 yields ot values implies oveedamping, we solve the

to+4)s k~ h+k sieavalue problem using these parameters. SUS
I - -yiads the eh Eteretie polynomial

i as3 6 l' o 24k with elleavalues

0 -412 L2 -0.1

60

!i.J ~* A.JV'h 1 U~A~W*. U~ ah- w u.% k 9 ~t',i UWVNL, A A.A. A -P.-. It U R ft A A. A4 1i-A * 1A



1= -1.2941 0 0

4- -10.9074 - a1+02 -02 0

Thus, the design procedure yields an overdamped 0 0 0+3

rOsponse, since each eigenvalue is a negative 0 -02 02+03 ]03real uber. L0 0 -03  o3+ 44.

Desisn Application k, -ki 0 0

The process described here may be useful in Al kl+k 2  -k2  0
enhancing the survivability of certain X
structures by designing the. to have an 0 -k2  k2 +k3  X-k4 n1 n2
overdamped free response. In order to
illustrate this in a design context, we consider L J
the drive train of a Darrieus wind turbine. A 4,- -' eodel, excluding damping, of the DOE/Sandia, 60
modelexclding ax is ofnd t e nd di train where the Ji are the various values of inertia,KW, vertical axis wind turbine and drive train the *I t Aaded damping constants. d4 is the

is provided by Rueter E7-61 and is reproduced damping constant due tosithe induction peerator,
here with the addition of damping (sea Figure k and k2 p ri shaft stiffness onstants and k
2). The numerical values for inertia and 1and k are stiffness onstants ad w
stiffness are listed in the appendix along with ad k4 are stiffness constants associated witi
tthe transmission and pulley system. The
the definition of each parameter, transmission has a gear ratio n1 and the timing

In order to produce a C matrix which would belt has a ratio of n2 . Forming the matrixInodrt rdc ,Cmti hc ol As-4B yields:
allow inequalities similar to (3) to be

4 formulated, some mechanism must be available for (01+05)4 a k
adding damping to the system. For non- (A.48)1 s -_ + -L - 4
rotational systems this may be accomplished by .11 12 I
use of shook absorbers or linear actuators, For
rotati(:ual systems, devices such as Houdaillo
dampers may be useful. Figure 2 indicates the - 2
addition of such dampers to an existing system 3 T v

(i.e., clacepop0o and e6). 2. J24112

il 0 0 0 (AS-43ll I u (ka-4B)31 03-2 -

0 3 (AS-48)4 (A&-4S)4 1 " 0

0- (01+020 + 2 43' k,+k2

~ ~ ~ D 0 _53__

~J4

VIA, a kOAcati4 of trblm. )AS d ive teslse omperaots
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02(01+02) 02(02+*3) k2  Conclusion
(A1-4B)23  2

3 3 2 3 2 3 A method for elimiaating oscillation in n-
-W-0) degree of freedom lumped parameter systems by
= (A'4B)32  increasing the amount of viscous damping in the

system has been presented. Examples of two and

0203 four degree of freedom systems indicate the(A3-4B)2 4
=  (A4B)42 = complexity of the process and its level of

-3 2-4 Y.T, applicability.

021 (02+03)2 03a k2+k3 - Another method available to produce total
W(A'-4B) 33 j2- +---4 overdamping is given in [2] for two degree of

23 333 freedom systems. Unfoxtunately to extend the

process in (2] to n-degrees of freedom requires
W3(02*03) 3(°3 +d4) Ain 2 k4  a closed form solution of -polynomials of degree

(A-4B)34' ... + (n-l). However, the method here requires only
J3 V137 34 Vj34 4 30 4  the numerical solution of non-linear equalities.

S(Also, for the two degree of freedom case, the
(A -4B)43 method presented in (2.] allows only the

parameters 01 and a to be adjusted. As an
033 (o3+d4 )s k4  alternative, the aetiod presented here allowsW-04) 44a - + - _4 -.(4s 4* all of the parameters Vi , 04 and ki to be
34 341 4 adjusted. Thus it seems t~at the method

presented here may be nor* computationally
The addition of ci. 02 , o3 5 and 6 is useful in design work.
necessary to make A2-4 positive definite.
Requiring the four leading principal minors of
the 44 matrix A-4 to be positive, yields four
inequalities in the inertia, damping and The authors wish to than the reviewers for
stiffness parameters. Using the values from (7] their helpful criticisms. The first author
and 18] forT3 and k (listed in the appendix) acknowledges the support of the Research
and choosing h4e c to satisfy the inequalities Pounation of SUNY.
yields:
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Appendi: Parameter values of the DOE/SANDIA
WIND TURBINE (values taken from [7]) for the ease
of tip speed ratio of 2 and turbine rotational
speed of 50.6 RPM

31312=/2 of turbine motor inertia - 1.65104 N-
sees-m (1.46x10' lb-secs-in)

33 = transmission inertia m 2.43i0s N-seo'-in
(2.15x0' lb-secs-in)

J4 ; generator inertia - 3.06 N-seos-in (27.1

Ib-sec'-in)

n, - transmission sear ratio - 35.6

1800
2  - pulley gear ratio - (35.6)(50.6) 99

k, = rotor tower stiffness - 1.65z10' N-a/rad
(1.46z105 lb-in/rad)

k2  -absft stiffness - 2.69:10 s N-U/tad
(2.39:10' lb-it/rad)

X, •transmission shaft stiffness - 1.41:10 s

N--/rd (1.25zlO lb-in/rad)

J--* generator shaft stiffness a 2.10A106 a-
a/r6 (1.86&104 lb-in/ sad)

-k3  nS*2s2Z 2.6Z1O6 N-n/rad (2J02101 lb-
-- kl is/ad)

k4  -- 1.0UlO'a-s/iad (Jza1O'1b-A/tad)
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On the Optimal Location of Vibration Supports

B. P. Wang, W. D. Pilkey
University of Virginia

Charlottesville, Virginia 22901

The problem of optimal positioning of vibration supports to raise
the fundamental natural frequency of a system is studied. It is proposed
that possible locations of the supports can be compared by studying the
corresponding antiresonant frequencies. It is contended that a near
optimal location is achieved by locating the supports such that the
cozresponding lowest antiresonant frequency is a maximum and a criterion
isi proposed. Numerical examples are used to illustrate this criterion.

zMROXCTIzON where R() is the receptance of dof 3.
Equation (1) can be derived using the receptance

Intermedfate supports are often '.ntroduced method (23. Alternatively, it can be found by
in engineering structures to increase the considering the addition of a spring to a system
resonant frequencies of the system as well as to as a local modification (3,4,5). The
support weights. These supports, when realized receptance UR,(,f can be oeessed in model
by actual structural components, are olastic summation fo as
supports. Thus, the problem of designing
vibration supports to raise the fundumental 2
frequency involves finding both the location and n 3
the required stiffness of the supports. R (I) M 11 22

In an earlier paper, Desler and Curreri (1)
studied the design of vibration supports for
piping systems, They used the traneformatrix where i is the natural frequency of the Ith
method to study a spring supported cantilever
beam and a spring supported L bend. 1hey found mode of the unsupported system, (pl1 ) is the

the optimum spring location, i.e.,the most correspondi eigenvector, 0*7 is the th
effective location to put a spring to iwrease component of (0t), a is the number of mode
the fundamental frequency, from nmerical utilized, and a t - ( a) ml#$,) is the
experimentation, They concluded that a
nearoptimal position for a flexible spring Is at generelised meS of the Ith mode. Thus, for
a node of the send mode. For a rigid a any given spring rate k, q. (C) along with Eq.

this would be the optimal location. (2) can 1e use" to Noloe for the rew
frequenctes W. The natural freqencies of the

In the present paper, a criterion fe supported systeo increase as the spring rate

selecting the optimal springlocatibn will be increases. in the lit, as k approaches

derived. his criterion can also be used to infinity. A.e.. the support become ideally

compare the relative effectiveness of ses of rigid, the frequency equation beomes

proposed support locations.
URj(i) 0 (3)

or a multiple-degres-of-freedom. undamped Denote the lowest W that satisfies Eq. (31.
system with a mpting late of )t ntroduced at dot a a'. then a (01t the lowest antireso ant
J, the frequency equation A frequeny of dof 1. hat Ws. a4, 1 is the

highest fundamental frequency achievable when
+ 3 3 (u) - 0 (1) the support at dot 4 become rigid. It followe

from the emipnvlue sepalration property (4i,
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that a(J ) ( W2 where i2 is the second natural 3WMICAL ZfLICS
frequency of the unsupported system. Thus, by
choosing dof J for a rigid support as a node in To illustrate the basic contention of the
the second mode of the unsupported system, we aPC criterion, consider the simply supported
have a (  which is the ai beam of Fig. 1. The fundamental frequency of
hv a .2, this beam is 15.71 Hz. It is desired to
fundamental frequency. This result has introduce two intermediate supports to increase
been kncwn for some time (13. the fundamental natural frequencyto above 25 Hz.

For this example it is practical to restrict the
Now consider the case of introducing support locations to two possible sets of

springs at dof J I'2 ...J. Following the positions, sayA (xI - .11, x - O.5L) and B (xI

procedure of Ref. (5], the frequency equation 0.34L. 32 0
of the supported system is given by

det([I1 + [tH][KI) - 0 (4) L

where (I) is an ems identity matrix
(A) is the receptance matrix associated

with thedof ll J .... is.O I.e..

L - 2.S4 m (100 in.)

Ak Z n 9OP (107 psi)

Ak p -8748.73 3 (0.0 1 lb-sec2)A 2m 3  n2'

(AK) -. -an .xe
Ak diagonal I a 4,1esXo m M

4 (10 in4 )

* matrix

AkI is the sp'ing rate of the support at dof . Pig. I A simply supported beam

In the li itinp case when all & iq. (4) Poz this cae with two supports, we have
become

det~ft) -0 (6) A fAK1  0

(.7)AK].(7)
Let a be the lowest root of &q. (6). Then 0 K
the optimal rigid support locations will be wMre •

a tIs a maxims. We are now in a position anm
to propose a oriterion for near optimal flexible
support locations.

Mmnm inaiii VMQw!- azUUx. (Mio 11 12 (8)
For gvn sets of suprl Ilatone. a near vftj.2

. Obllmel Go at locations Is where, the correslondtng 21 22;Olo west anllres0nant freo*nC to a ms~rnum.

we Will Call this Criterion the VmAiM N It is convenient to calculate the elments
Untireeonut IPquea Criterlr (IUI. AttI)  4a model Sumation., VhU*,

VMS Criterion lead to the two optistal

locations for rigid supports and to near optimal R " (xl'x21
ones for flexible supports. the stiffer the
spring rates. the better the criterion. To find
the antivem t frequency one can either solve
an eigeovalue problem of order to-#$ t solve n
the nonlinear 2Q. (6). 1&1 0 *W 011~



where, for a simply supported beam, the relative effectiveness of possible sets of
loications for placing vibration supports. This
will narrow the design problem to that of

P1 (x) sin determining the required stiffness to achieve a
(xL desired fundamental natural frequency.

0 -1/2 PL TaREzP I
£ Natural Frequencies for Simply Supported Deam

17r LL Fa with Two Xqual intermediate Springs

L
2  

__ _ _ _ _ _ __ _ _ _ _ _ _

inth nmeicl alultin i 0 s se, r, Spring Fundamental Natural Frequency

in other words. 20 modes are used to evaluate SifesO h upre ytm(t

the receptances in Eq. (9). The frequency N/IS (lb/in.) z1 - 0.lL, 2, - 0.34L.
determinant of Eq. (7) gives x - 0.511 x - 0.67!.

(A)f -fundamental natural freqency for rigid
1 supports at x I - 0.1!. X2 - 0.51# 17513 (100) 15.86 15.95

f -70.99 2x
87565 (500) 16.67 16.66

f fundamental natural frequency for rigid 175130 (1000 17.39 17. -J9
supports at X, 0.346.. -2 0.67!. 350266 (2000) 10.90 20.00

-180.1 Hz 525390 (3000) 20.30 21.61

(a) (A) 700520 (4000) 21.61 23.#8
Since f ,f I we conclude that the location 875650 ( 5000) 22.02 2S.05
pair 8 is more effective than location pair A in 1530(000 80 17
raising the fundamental frequency of t"* system, 710 1.00 60 17

m76.9 210.1

To ocieck the above proposition, we will_________________________
compute the fundamental frequencies of the
spring supported beam for the special case of
equal spring rates, The results are summarized TAOXIS 2
in Table 1. alternatively, we can compute the Requred spring Rtate to Achieve Prescribed
required I equall spring rates for both springs Natural. Frequency
for given fundamental frequencies. The results
are summarized in Table 2. Wee observe that to ____________________

raise the fundamental frequency above 6 l asM. Pundamental Required Spring Stiffness
springs with rates ef about 1.23 x 10 RM(70 Natural ( Wbin) for Springs at
W~bin) are nteedid at location X1 a 0.1!. &Mnd - Frequey (sI Xl -0.11i, x, -0.5!
0.5!.. while loe stiff springs with rates of Mt 2l/n

0.6 10 6 /s (5000 Wbin) are needed if theyN/ bin

are. boated at xI- 0.34!..x- 0.67!.. 16 29236 1166.95)
17 132600 (761.93.)
is 244632 (1396.36)

AS a Second numerical OYMPle. consider the i 362366 (2069.24)
clamped-supported beam of Fig. 2 with an 20 41635 (2760.421
intermediate spring support. The fundamental 25 1214560 (6934,0?)
irtquency of this beam is plotted in fig. 3 as a 30 2125440 (12137,50)
function of supprt spring locations and rates.______________________
From KVAC. a near optimal location is determined Fundamental Required Spting Stiffness
to be xn * 27.b in.. the point of maximum Natural (lb/I for Springs at
antiresonent frequency. This is the optisfal Frquency (#asI W 2 - 0,53L. it - 0,67!
location for a rigid support. The optima W/a Fib/in),
support diverges frem xn a 27.1 as the Stif~fness_____________________
ot the support Is decreased, However, note that 16 21220.3 1121.171
the system with a spring support located at in 17 650962.7 (955.09)
..7.4 results in a System almostd as good as the IS177135 (1011.45)
system with a spring located at the true optimal it262047 114".21
location, 20 351610 - (2007.71)

25 69412 t 4964.781
toczsoo t0 1505170 1594. 611

* In summAvy. a simple criterion has boen
derived that will allow a designer to 44ttermira
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DYNAMIC BUCKLING OF PINNED COLUMNS

J.M. ReAdy

David W. Taylor Naval Ship R&ID Center
Bethesda, MD 20084

ABSTRACT

To develop design guidance for foundations of shipboard equipment DTNSRDC
conducted 8 series of dynamic tests an parametrically varied pinned columns.
Tests showed the: Incipient buckling can occur at loads as low as 70 percent
of the Ruler buckling load. Applied dynamic loads of 50 percent of the Euler

* load do not appear to cause buckling when eccentricity to low. The tests
also showed that columns can carry loads that are multiples of the Ruler
load provided the load duration to short compared to-the fundamencal bending
period of the columns; otherwise the columnns collapse. Columns subjected
to dynamic compressive loads equal to the Ruler load and of a duration
equal to the period of the column art In isminent danger of collapse.

INTRODUCTION I5SOW.AASS

Aar underwater ex~plosion (UNDEX) near aTohl ei clusfrdyacIbckship can Induco dynamic compression loads In H tP es adeg toa fort damic buck-foundations of Internal equipment mounted Ingtsssdrt nlm es aaade
the ship. This loading can trigger In- the, c" mninl ,lss-wsmd o eeu
pression members a collapse nechaninm called signficant paraeters. Involved to their
dynamic buckling. As used in this text, dyamk dynxamic behavior. 'A pinned column of.
buckling is the collapse history of a colun tectalsrla section,hvl4nauoest
that, bends in Its fundamental mode. the aen- oned svrtalyrtaie anthted increased In use of high strength steelonsdvavetclyrtai* dth
(a.&. IIT-130) In the structures of Navy ships~m other was free to rotate An to moVe
dan lead to a reduction of structural sectioas vortically. it -I$ Idealized W~that shown.
over that If RY-80 or NTI steel wers used. In figure I-
This can occur when yield stress governs a
design rather than a critical buckling streat. The variables lavolved in buckling are,
The reduced section way, in the cas of colmanst h ple od? t uain,~ers
Increase their susceptibility to buckle 4ymit- time of theloadir* te, the midpoint deften-
cally I roe the effects of. am underwater ihc tion yo end a chatocteristlc of the colitns

loadng n aahi. -bent shape, either the ecciettiolty y, br
it &~dius 4f curvature. Other: va o

*David V. Taylor Naval Ship 160 Center the coltam inaclude length t. radius of:
(OTNSkDC) conducted a series of dyiaic buckling grto ,fnaetlpro ,Llrla

tests thepurpse o 01c vattot any static weight V on the colun, adtests thepurpse o whih U t~tfinaly, the column area A. Variables
a) Confirm some of the theoretical obwer AccountinS for material properties Include

vations about dynAmic buckilng, *.I., 4iy9 n rdleo lsiiy3
long coltus can vathetand -multiples
of iUs Luler espacity for short. periods In the above listing, deflection, is a
Of tidal dependent varieblo. Out duration S may alsobe a dependent variable because vertical

b) ic Dete ami cieceraceos, f in -motion of the sand of the column may affect
prihdamic bukigbcm.£It. Maine., 0 W~il be a dependent varitable

0) Develop deissis guidelines. Inti "tss

' Um49o 5MWW&'ttk dkkt1itk IN ~ 4~ V MI ~ %~~1A ~ ~ ~~ A~ U A 5AI



To these dependent variables a character- constant force which was then transmitted
istic strain at the midpoint of the column can down the spacer to the column below.
be added, if only one cross-sectional ihape Is
to be investigated, a3 here in this case. In a The test columns were made from bars
general case, a characteristic of the cross- having a rectangular cross-section and to
section, e.g., section modulus, must be included which round bars of 3/4" diameter were welded
in the list of independent variables. The breadth-wise at each end of a column. The
variables (c, e, y) give rise to three indepen- post-test photographs of Figure 3 show the
dent nondimensional equations of which only one manner of the construction of the columns.
is shown below; the other two are similar. If When the columns were vertically placed in
we have accounted for all the variables that the machine the cross bars extended beyond
affect dynamic buckling, a functional equation the breadth of the column and into vertical
appears as: gui4e channels located to either side of the

column. The guide channels were welded in
f(y, yis t, r. Tv tr* E, Ps place in the machine, and since the rross

(1) bars close fit into the channels, they served
P* PE, A, W) 0 0 to keep the ends of the column reasonably

aligned, yet they permitted the top of the
Followine the Buckingham Pi theorem, 1 ,2'3  column to rotate and to move vertically in

we have 12 variables and three dimensions, thus response to the drop weight.
there are 9 dimensionless variables that affect
dynamic buckling. After some manipulation, a DESCIPTION OF COLUIN
,nonJlmensional equation may be derived and it
appears as: The geometries and properties of all the

/columns are listed in Table 1. Note that
/Yi - (/r) 2 "PE/AS (yl/t, preset eccentricities y1 of the columns

were altered because of the weight of spacers
Z/r, tr/T, tvco/. P/P1  (2) on the columns; at first they did not appear

significant and were not measured. However,
W/Pr' AM 2 ) later It seamed prudent to use altered values

of eccentricities. So the altered aeccentri-
Note acoustic velocity ao - (Z/0)1/ 2  cities that resulted were calculated and are

shown in Table IA. These values were used
The deflection ratio y/y 0 the duration ratio in all subsequent calculations Involving

$/T, or the characteristic maipoint strain could eccentricity.
be used on the left side of this equation. Of
the independent variables that are l ietid In The columns used in these tests were made

Sequation 2, yl/t,e/r, rC/T, trc /t, Al and of 6061-T6 aluminum. The test results should
P/P 1 art judged to-bs te most sportant. The be equally applicable to other materials because
effect of tha variable W/ is jcdgod.talm l of the parametric nature of the testing.
fur these taste. Bot static lowo Could have
a sisnificant effect on buckling history of .. . U OF TEltS AND Luo CONDITIO11S
a coltu; they lo~vr the ltndsaental frequency,
Making the column slower to respond than it For these tests a total of 9 columne were.
would othervise. In these tet 4 sati tle .ad: used of which three were nearly identical and
©ome from spaeras that had to bp Interposed the rmainang 6 were parametrically varied
between on appliet -oad atd zhoItoluan .- In according to equation 2. The column* were
the worst came of thae tests, the eff t nmbered 1 through 71 note that there were 3
of *tatic load wse estimated to be l-se than No. I columns. Columns I through 6 were tested
t 0 Opercent of the ~eapone of tis -column with.. twine - one test with an applied load about 1/2
oft Initial loading. of their tuler c&oaity and another test using

an applied load equal to the tistr Capacity.
TE1 DtSCTIIPTyOM Column 7 could only be tested once, since

the drnp weight.itsel would buckle the column.
AIPARAIUS For this column (3 in ammber) lsde of 1, 2 a ' S

ti r their cols eapeitie uere appied.
To do thea tewts the drop fmlsht mahine

shown in Vilue 2 too# used.. A 22k lb. veight The tote) number of tests wae 17, encom-.
ws suspended ab6vo * einn end ','en released. pasi9 load conditions of 1/10 to $-times the
The weitht rode between .tailq that guided It& tuler capacity of the columns with the bulk
downward path. otween the top eeiof the of the experiments dones at load conditions
c olm and the drp ihelht Wa a sisecer 4top of 1/2 and full Eul.r loada. For column I a
of vhich wee a cervhable styrooo lock. r.peatabilitty test of 1/2 ito tuler capacity Vag
The styrotoas block toe ustd to resolve done. ANI Column 6. a short, Strong. olumn,.
the impact o she Zo.4 lb. drop welbht to a was tested to 1/10 of of its ler capacity

..0
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in addition to the 1/1 and full Euler load INSTRUMENTATION
tests. N~ote that these load conditions repre-
sent Ideal values; actual load conditions The Instrumentation consisted of 2 strain
were different. Table 2 identifies the tests gages, 2 displacement gages, 1 accelerometer
and the Ideal load conditions. and a timing signal. Two strain gages were

mounted at the midpoint of each column; one
LOAD SHAPE gage measured a bending strain and the other

measured axial compressive strain. Soe
Static tests have shown that styrofoam Figure 2.

when statically compressed to a certain stress
will crush under a coastent load. At about Displacement meters were used to measure
50 percent strain, the styrofoam stiffens and the lateral displacement of the mid-section
the stress rises exponentially till complete and vetx:Ical displacement of the upper end
compression obtains. Under the Impact force of the coluns. These meters can be seem In
frova the 2724 lb. drop weight a similar load Figures 2.
shape, but varyinS In time, Is obtained. For
example, Figure 4 shows a typical acceleration An accelerometer was mounted to the side
history of the 224 pound mass as It crushes a of the drop weight. See Figure 2.
styrofoam block for which the support was rela-
tively stiff. The record ahows a rise time TEST RESVLTS
(6 msec) In which acceleration reaches some
value which then remains constant for a period OSCILLOGRAPH RECORDS
of time, fcllowed hy a stiffening of the styro-
foam which gives rise to accelerations Ptuch Figures 5, 6 and 7 are typical records of
beyond the coostant value, the responses of a eolazan to the titpact of the

drop weight. The responses In Figures S and 6
Constant force crushing of styrofoam Is .i are for the nominal load condition of R - 1/2

convenient property for u'se In these buckling or for an applied load of 1/2 the Walr capa-
tests. The loading and its effects are easily city of the teat columns. For Figure 7 the
defined or characterized during the period In applied lood Is about 2 112 times the drop
which acceleration, vis-a-wis force, is weight or a nominal load condition of R a 1.
constant. And also, much of the theoretical
work on dynamic buckling use constant forces In Figures 5 and 6 we can s* that the
on colums, thoogh suddenly applied. The load time at which the duration of flat aeceler-
shape for the buckling tests, however, is less ation ends, is signalled by a sinusoidal
than this ideal, stice tt liea a finite rise motion, and that prior to this sinusoldal

-time. This paper to concerned with the loading action the lateral displacement reached a
and Its effect* up to the time that this con- 'maximum. Note that axial strains are small
staot accoletation endt. compared to bending stretins and also that

their durations are short. In thet case of
the I ul1 load condition, Figure I shows that

GROUPING 0 O WN beniding strain, and the lateral and vertical
disploaementsi continuet to rise beyond t4e

In the bucking tests; the coluns were period of flat aceleration. This Is expec
Aldvided into thr* groups, as shown In Table ftd, ines the applied load is more than thet
.34 such that saeentricity (yf/0, slendurneas Ruler load, and the column would therefore.
(tr) a:,d stoutness (Ali, ) ratsog would be. buckle.i
variobles. Croup I enentathtit three solumas
-VhIle Groups 11 and III have two column*a ach. tigtare 8 is a colletion of too records
M~ table 3 shows, however, only In the test that show response histories of several colub.
series of eccootricity (GoIup. I) usa It after Impact by the drop weight. The plots

* possible ttp copeey slt ccetricity were taien from asoillolroph records arml era
an1d'keep the other non-dinonsioaal variables shown hire In no.-dimeans Ional fottui rosponse
consitat. to Group Ito It wes not possible to is in terms of deflection yy ed tilt In
isolatO slenderneass the period (T) of coluns, toe of OTI where t Is the real time lad T
appoatiolt lo the ratio teoh. lsoaie, And to the period of the column. Weo time fat
itt Group II t 4*t not.possible to'isolao each plot weit takeno at the start of lateralt
atoutnosil (AWi)t the Tr, R and nlneats otion, as woo Indicated fit the aoll Iorophtn.
ra tos also varied. Obeosly, having moirs The casured load condlitioas *rente from a low
than *oe variabte makes the caoeaon of of It a 0A23 to a high ot A - 7.6. The plots
dAtA diffieult. ot Whofa theset *iatra, vt- indjeate that deflections increase as loading
A.1bts 0om0 Int0 PJAY lat? Ott tit this g.f#1fo inerianesg for ltead& loe then 70 pertent of
their effecats or# judgotl to be-aeodary air the foltr load (1 0.70) the ateflecriodo rotach
teortiary tu columa. responso. a Peak and tite start to decline. Not@ thst

there appear. to. be a lag betwen eose.~i



Of columns 1 and 5. These columns are Ident~i- the gage reading. Early on, when lateral
cal except that the eccentricity for column 5 deflection was small the axial gage gave
Is larger than for column 1. a truer sLrain account than later.

Frloads greater than 70 percent of che in general, bending strains are more
Ruler lodtetnec opa per osignificant than axial strains; this ic not

diminish until R - 1.12, or the Ruler load surprising since the columuia tend to be long
is exceeded by about 12 percent. Beyond this and have pronounced eccentr!cit ies. Lops
loading, deflections monotonically increaso columns buckle at relatively low comipressive
with time because the Ruler load Is exceeded. axial strains, and eccesitricity easily Induces

bending strains. Values of bending strains
The deflection histories of all of these ranged from a low of 312 uin/in (Test 6A,

records are foreshortened because acceleration column 6) to the extremely high 19,929 pjin/in
did not rtmain constant for the entire tes (Test 6C. column 6). Rise times ranged from

evn;It became sinusoidal, the very low 3.5 macc, (Test 6C, column 6 to
event;the very high 75 ase, (Test 7A, column 7).
ACCEgUAION ATADEFLECTION DATA

Table 4 contains acceleration data in -
cludfrt1 peihe, rise times and durations. Not Lateral deflections ranged from about
that the 1o*4conditions (it) when referred to acre (Test 6A, column 6) to a high of 3.34 In.

In te tet blovare omial. he aed-(Test M., column 7). Their rise times were
orantions ranged from a low of 0.36 (Test 7A, gnrlytesm otoefrpa edn

colun 7 toa hih o 122g (est6Cstrains. Vertical displacements are about 1/3
column 6) Te ais h ig eah rat of theseIatEC to 1/2 of the lateral deflections and hav*

accolerat io.s, decreased a* applied loads bu h aw ietws
Increased. Thit rise ties is about 10se macSScfNN-IM OLVRIBEwhen R - V/2 and 5 mace when R w 1.0. Cio 'umn ALSSONo-IE$Oa AU LS
atlffuesses do not sees -to affect this vc~u. 0

Unde loa coditin f l/t th dtra~-Tables 4 through 7 contain the measured
tions were, e",ePC for the test on colu 6,atdt;i nld. ceeainsri.
greater than 50 -w;c the durations rnn la4tertal aIt vricldspcceleatnt, raise
Zrop a low of 27 eaec to i high Ofi 114 mccc. laderuala vetisa diatascnverie toithe
As load Increased, Its"'aartlon decreased. non-dimeionalval. ofi eata aionre to the
for example whent' a 1,0 durations wVe " -iasoa aibe feuto n
-general ly. les, than- 30 tet; the low we#s. ar show in 1Uh15 s, 9 and 10. Tho Woliowlas

and th high,~ ~ aetion tooks at each of the no*-dizensional
usac vioriublse and tries to correlsaebc var."able
~ DATA with rosponves of the tolumna. Thfe aose

Tabloa 54 6, arA 7 show-the peakt v4lues end bending htrol C b
of stralis, laTrAl * swa rtical deflections odbi

adth~iir ior"sPoadig :Vioe tine*. 1hese ~ dIsi
vs1aeir thsetht ocure wthei te Looking first at the load ratio I h

- duatin o thefla. rspose o th edel-tables show that for vominal test ceeditloo
eratit trcet II1I, the actual loading ranged frog a

The ttels~tditwor shot aqusraw ow of 0.443. to A high of 0.1t. hor nomimna
of hebed~~ arfln tat .o~I.~ oad omditiou. a k I., the actual loading

:%ftab liey ranges hat a a own so the m aod from a low of .0.92 to. a high of 1,53.
of 142 tle/ia (Tat 5, C~wao ). fcallfigure 9 shw a soslifear depmaeaey of

jii r-u measue iui~A iotaa 36 reepoace y~ and the applied load. 'if the cees
loadinerssedsad s siffon. icrea*d.*tor R tires to k h Sioa plot GUMw a

Y. iortun ease of iau '.0 afrs to Yy but tkis I# onsly eigaifiea
*fttfatleu for this# testso! e uetusae.u obot
4totedlf )Y Ott * uoltho, column. theOta, -by tie boakI t a of the dotllua Itself* Note,

thtare listedat these paski tgut ottautredaanha ceteuerldweeseed
early It the strain recor)s those that occ1urred Ai tte Sk'Colmnv wuld eseptetely buckle:,
ater vetobal effeCt4 by boodift of aoiously liatetal defleeaito Wu Ue more

the16 Cot~ baeoe oohrvre h has indicated hee.
theso'teae a In la he r Vof~ the l~i ws~ea h4,i htwy
lateral. dte~elo of tho colusosi heOt, Uu~0,.te054 I* yia ield. ocurs (togthet9A)*
baei44,--k_4 iswel s a* MArU, affMtdd100 ,teasto ow cur Mg*U)



5 see Table 5 for the bending strain of column 7. enough to withstand elastically a deflec-
At 90 percent of the Euler load strains greater tion that is in theory twice the initial.
than 5 times the yield strain occurred; see eccentricity.
Table 6 for the bending strain of column 6.
Clearly, then, a dynamic compression load less Looking now at test data, Figure 11C
than the Euler capacity of a column can bring qhows for columns 1, 4 and 5 a plot of
on an incipient buckling situation. Whether Oh vs. Yi which was taken from Tables IA and 5.
or not a column suffers catastrophic collapse The plot of that data approaches zero as near

depends In part, on the duration Cf that load, as experiment allows. For small eccentri-
but more importantly on the energy absorption cities the. initial slope of of this curve is

capacity of the columns while buckling, and about 6 h'Yi - 0.83. The maximum midpoint deflec-
lastly on the residual strength of the column tion of a column is Ym and
after the dynamic load has dissipated. For
example, a column may be able to absorb plasti- Ym . &h + yi (3)
cally a dynamic load but then it could reach
a deflected shape such that the normal service where y, is the initial eccentricity
loads could now continue the buckling motion.

and 6 h is the midpoint displacement of a column
Eccentricity Ratio

* Looking at response data for columns 1, 4, Dividing equation 3 by y, we have
and 5 for which their slenderness ratio (f/r)

is constant (312.5), Figures 10 and 11 show the Y,/Yi - 1 + 8h/yi (3A)
variation in peak response (ym/yj) as a func-

tion of eccentricity (yi/f). Figure 10 shows And substituting 6h/yi = 0.83 Into equation 3A
that under a loading R - 1/2 the peak deflec- we have

-t tions of the columns decrease linearly,
with a shallow slope as eccentricity Increases, ym/yi - 1,83 (4)
though the absolute value of lateral deflection
increases; see Table 5. When R a 1.0, the In other words when yi 0, ym/y1l+. 8 3 .
response ratio also decreases with increasing This value in the limit lor small eccen-
eccentricity; see Figure 10. For this case It tricities supports the bound ym/y, - 2
would appear that the response ratio should be deriveg fn several related theoretical
more than shown, since the Euler loid was works.

__attained. However, the durations were as much
as seven times less here than when the load was Though largely of academic interest,
R - 1/2 (see Table 4). In other words, had there is another bound but at the upper limit
.- the duratinn of the load been as long as in of eccentricity or, yil/ - 1/2. At that point
the condition when R - 1/2, we might reasonably Sh is again zero, but now it is because the
expect deflections to be as high as seven co umn is entirely bent over, and it has no
times more than measured. lateral movement left. In this case h . 0.hence ym'yi - .

The yf/yi responses of 
all of the columns

are plotted in Figure 11 as a function of In bummary, eccentricity does play a
eccentricity yi/f. Figure 11 shows that the role in the response of a column. At low
responses of c6lumns 2,'3, 6 and 7 are scat- eccentricities the response seems to be

tered about the data curve for columns 1, limited to about twice the initial
4, and 5. The scatter occurs because other eccentricity. As eccentricity goes to
variables affect their behavior. its upper limit of Z/2, response decreases,

4 or in the limit Ym/yi 1.
Notice in Figure tIA that in the limit as

y+0, Ym/Yi4 -; in other words the response Bunding strains for columns 1, 4, and 5

would appear.unbounded. In the case of an are shown in Table 5, 6, and 7; these values,
applied load greater than the Euler load this after subtracting a calculated axial com-
is reasonable. But when R - 1/2 theory Indi- pression stress, are plotted in Figure 12.
cates that response is limited, not unbounded, The strains ore consistent with the pre-
If that indeed is true in our case, and there viously shuwn deflection data. When R 1/2
is no reason to suspect otherwise, then the strains increase with IncreasIng yi/.
ym f(Y ), such that when the y1 a 0, the When R w 1.0 the srains decrease as yll
maximum lateral dlsplacement 

th must also be increases; had the durations been as long
zero. And !f that is true, then a perfectly here as when R - 1/2. then the strains would

straight column c'an not buckle when subjected have been concommitantly increased. In fact,
to 1/2 its Euler load. This assumes complete if the strains were Increased by the ratio
-lasticity during the motion of the column, of the duration when R - 1.0 and R - 1/2,
In other words, the columno must be strong
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respectively, then the strains would be in 3600 uin/in strain boundary line and the
respctivly, hencolumn response line occurs at an eccen-

Figure 12 on a curve sloped in the same general city o abou ocper s i in
direction as that when R * 1/2; strains in- tricity of about 9 percent. This Is in
drectinath aing wh en1/2strins ifair agreement with a 7 percent eccentricity
crease with increasing eccentricity gained from extrapolating the strain test data

Slenderness Ratio (e/r) in Figure 12.

Looking at the response data for Group II From the trends indicated in Figure 15 we

columns 2 and 4, Figure 13 shows the variation may conclude that columns of relatively short
of response (ym/yi) with slenderness ratio. length, of moderately large eccentricity, say
For nominal roed pondetion H - 1/2 the response of up to 3 percent, and of moderate strength,

say 30,000 psi, will not yield for loading
increases with increasing slenderness ratio; condition R = 1/2. And they will not yield
on th6 other hand, when R - 1.0 the reverse
appears. But as noted before, had the duration 'even it the load were suddenly applied. This

been as long for this condition as for when experimental work supports similar Indca

R w 1/2 then the responses would have been tions of theoretical work In this respect.

more. Data for the remaining columns are In the case where R - 1.0 a series of
plotted In Figure 13 and appear as scatter strain boundary curves are not as easily made
about the line drawn for columns 2 and 4.
These figures indicate a functional relation- as when R - 1/2. The bending moment that
ship of response and slenderness ratio. occurs at the midpoint of the column arises

frot not only the vertically applied load but

Figure 14 is a plot of bending strain aso from horizontal inertial forces and a

against e/r ratio for Group II columns 2 and horizontal reaction at the support induced

4. The curves that are drawn are consistent in by the lateral motion of the column itself.

slope with deflection curves of Figure 12. In A dynamic analysis of oolnmi i, 4R and 5 for

general, it seems reasonable to conclude that load condition R a 1.2 proved too crude for
use in establishing a yield boundary. So, the

as /r increases deflection and corresponding experimental responses y /y1 were increased
strain would increase the values those deyiec- by the ratio of the yiela arain to measured
tpons or strains take depend on the dynamic strain. The reoulting approximate yield
perie o boundary is shown In Figure 16. This figure

period T. indicates for the actual load condition of

Slenderness, Eccentricity and Onset of Yield these tests (R = 1.2) that yielding would
occur at about 0.6 percent eccentricity; this

Figures 4 thru 14 have shown functional agrees with the extrapolated data in Figure 12
relationships of deflectio w nd strain to the which indicates yielding at abont 0.5 percent

relaionhip ofdefectin ad sral tothe eccentricity.
variations in eccentricity and slenderness
ratio. These figures can be combined to show Figures 17 and 18 relate bending strain
a relationship between response (ym/yi), eccen- to deflecton y /y,, eccentricity and slender-
tricity, slenderness ratio, And the onset of of the tell columns. Of the two data
yield in the column. For example, in a nolumn curves In Figure 18. one curve (where eccen-
with rectangular crcs-section the bending tricin to csn ows fr Rwher a pen-
moment (N) for onset ofa yield i , ,(bd A/6) tricity is constant) shows for R .1 a peed-
where b aAd d are croas-sectlonal dimensions pitous rise in strain beginning at y5 /y - 4.

and o As the yield stress of the eoltan For tomparison, the other curve (where 1/r is
aterial. If when i - 1/2 the applied vertical constant, or 3l2 shows a much more gradual
Ioa (P) is the predominant force producing rise in strain as eccentricity is increased.

* moment, the lateral deflection of the midpoint Figure 17 shows peak bending strains clue-
of the column at which the onset of yielding tared vertically at about response yF/yj - 1.9
occurs may be c1cualted fro' '/. Applyt"I for load condition R * 1/2. Obviously, columns
this to the Croup I coluatms i h tind 5, of insufficent strength, or of a cross-section
boundaries can be drawn which show t whatrectangular y yield ven t
deflections and eccentricities yielding occurs. dynamic loads 1/2 o t yir Ecler capacity. The

Figure 15 aliaws a seriva of linear bounds- data also Indicates that Inoreiiing acetn-
igas that reflect arious sdol yasldere tricity lenkd to Increasing strains. This is

ric tat efectvaiou iealyildig ~ iigein|e~t writh previously shown data. Th!e
strengths for load cotiodtn R v 1/2. The

deflection eccentricity curve of clumnsit effeets of sleaderness are anot apparent heve.

and 5, taken fro Figuro 10, i re-plotted
here. The intersection of th yield bounds- Stout"#* Ratio

rias with this ciirve indicates when yieldig Turning new to Group Ii t tolumns 3 and 6.
occurs. For example, the mdtorial for the there are three variable so that any reponse
test tolimns has a yield otriiin of about

y- 36001 0/in The 11 tersetin of the
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we see In Figure 23 that for nominal load can be much more than 6 msec. Note that these
condition R = 1/2 the strains are scattered tests were performed on long columns whose

about the 2 percent eccentricity curve. The axial strain were well below yield and whose

strains for column 1 (lowest in eccentricity) whose slenderness ratios were greater than 90;

fall below the curve while the strains of this, coupled with a decided eccentricity,
columns 5 and 7 (eccentricities 3.9 and 2.6 insured a bending failnre In the fundamental
percent, respectively) fall much above the mode of motion of the column.
curve. This is consistent with previous data.
Ot the other hand, eccentricity is not a factor Below are some further notes of caution
when the applied load is greater than the and limitations regarding the buckling
Euler load, or here when R = 1.2; the columns threshold of Figure 24. The curve assumes
were going to buckle anyway, regardless of a material at least as strong as HY-80;
the eccentricity, that the applied load is no more than the

Euler load; that axlal yield strain does
Threshold of Buckling not obtain; that duration of the foundations

motions Is no more than 6 mace; that eccentri-
In the case of UNDEX attack on ships city is less than 2 percent; and that the

experience has indicated that durations of cross-section is rectangular. Furthermore,
the shock load from conventional explosives the curve does not raflect strains brought
can last up to 6 meec for relatively low on by the residual bending of the column.
shock levels. Durations here are those of That Is, the column may still have a lateral
foundation motion of ship equipment; under- buckling velocity after the applied load has
water shock wave durations are lower. Note dissipated; this induces further strains that

further that 6 msec is an estimate of the are not accounied for in these tests. Hence,
upper bound of data from old ships; there this curve must be considered Incomplete for

- is no similar data for modern ships. load condition R - 1. Note again that static
If 6 msec duration Is reasonable for use loads could seriously influence tho dynamic
in attaining design shock levels, then based buckling capacity of columns.
on Figure 229 columns of rectangular cross-
section should have periods greater than 6 msec. Finally with a vary short column the

N In other words, the lateral frequency should predominant mode of failure is typically com-
be no more than about 167 hertz, If columns pression on the column section. Bending fs
are to remain elastic. If permanent set of little or no concern, at least initially.
were allowed, then advantage could be taken In between the very short and the long columns
of plasticity in the column section. But the effect of compression and bending Is a coo-
this is beyond the scope of this report. plicated mode of failure. Therefore, the results

of these tests should be taken as tentative with

The latural frequency (f) of 1 pinned, respect to short columns.
unloaded column Is.

COMPARISON OF THSOUZTICAL AND EXPBRD(ENTAL
it~- r/) (7) RESPONSE

Figure 2S i a plot of response (y /y ) to
whore e is tha column lettith duration raio (/T). When I a 1/! tie

V responses reach a maximum of ?mly, a 1.9 at
01 r/ Is the Inverse of slenderness ratio 9/T - 0.75. As it happens, the points fall

near a thtovetital response line derived for

* and co I the acoustic velocity of the a column subjected o a triangular, zero tse
column materiAl; for steel and aluminum time loading pulse. Response data when I - I
co a 196,500 to/see A* also plotted here, and it appears more or

leas as scatter to the high side of the thee-
Taking f a 167 hertz as the ff-amum retical response curve for a triangular pulse.

froqteney a column may have and not buckle And while there io no rigorous relationship
elastically, we way calculate A threshold between the test data and the theoretical
for bhukling As a function of slendern@s curves in Figure 25A, the test data supports
rAt1o and tho length of a column. this appears theory in that there is a maximum laegal
to tigure 24. deflection of a column when I - l/2.- Also

_ It supports the rislng lope of response when
*-Col mis t~ou fro.uonI t a ar louer than a - I, as theory indicates in figure 25A.

l147 hortt fall Abovo the solld c.ve and will However, reforener 1, another ork on a toc-
not bucklo, VTiso belav the curve will stant suddenly applied force on a coltmn,

0 btkle, If they experience ao IINDX load indlicated that . leveling off occurs when I * I,
eqal to it titler eapotity. nTe eurvo doos
not 4pply to UtDEX A uec~k frtm nfulear Figore 251 shows a plot of the test data
Qxplosions; the duratoni fro th"Ise explosions scattered about a curve developed for a
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7 there are three variables so that any response Time Ratios
can be theoretically ascrlbcd to any of the
three. Figure 19 shows shallow sloped curves This section looks at several nondimensional
for the responses of t ese columns to changes time variables. They are t c [t, t IT, and BIT.
in stoutness ratio A/Z . The curves indicate The variables tr/T and t c Yeowere obtained
that strain and deflections increase as A/Z from equation 2 by Inspectcon; O/T is also
increases. But slenderness ratio also changed obtained by inspection after adding e to the
(188 to 90) and frequency changed from 83 to list of significant physical variables.
269 hertz. Note that, vhen the response6
(ym/yi) for remaining columns (1, 2, 4, 5 and Figures 20 and 21 show plots of the
7) are also plotted, all, except that for No. deflection responses y /y, and the rise time
7, are grouped near the response of column variables t c Iand trTT. The figures indicate
No. 3; see Figure 19A. Within this grouping for load cond tion R 1 1/2 that y/y4 reaches
the response is about the same despitc the a maximum of about 1.8 which is consistent with
variations in their slenderness ratio (226 previously shown data. When the Euler load is
to 312) or frequencies (32 to 43 hertz), exceeded, however, duration is a critical factor
suggesting that the change in response between in what the maximum response of a column will
columns 3 and 6 are redoimInantly due to the be; obviously the longer the Euler load is ex-
changes in their A/e values and not in their ceeded the greater will be the deflection,
e/r ratios or frequencies. Note also that regardless of the length of the rise time. Thus,
eccentricily effects are low. the ym/yj vs. time curves in Figures 20

and 21 are misleading with respect to their
As to the response of column 7, Table 8 general applicability to columns. They are

shows that the actual applied load on the valid only under conditions of these tests,
column was 70 percent of its Euler capacity
(R - 0.712), and Table 4 shows that this load Since durations are significant, let us
lasted 114 msec. Fnr comparison, column 5 was use for time the ratio of duration to period
loaded at about 4! percent of its Euler (9/7) and for response use both deflection
capacity and for a duration of 84.5 twec (y /yi) and bending strain. figure 22A shows
which is of course shorter than for column 7. deileetion against duration ratio for actual
If all things were linear and and the load load conditions R a 0.55 and R w 1.2; the
on column 7 was the cam as on No. 5, then data is for columns 2, 3, 4 and 6; they have
the response of column 7 might reasonably eccentricities of less than 2 percent. When
be expected to drop according to the load R a 0.55 the deflections are shown as leveling
and duration ratios, or from y /y a 4,15 off to about ym/yj 1 2.0 as duration increases
to about 4.15 n .45/0.712 x OA71Ia, or y6 /y1  to 6 tiaes the period. When the uler load t

- 1.9; this is well within the grouping *xceeded, or here Rat 1.2, the deflections
(of columns I thru 5 SI Figure 19A. increase monotonlcally with Increasing duration

ratio. The usefulness of ijgure 22A lies tn
Figure 193 shows, for load conditions its applicability to columns of any cross-

R - 1/2, the bending s)rains of columns 3 section. But deflection alone do a not indicate
and 6 versus their A/ ratios. Just as If a column is satually collapsing; strlnas
deflections increase with increasing A/ 2  would Se to be better In this respect.
ratios, here too strains increase but *t a
relatively slower rate then tho deflections. Figure 221 shows bending strain& against
In fact the strain curve in .igur& 191 Indi- duration ratio for load condition R - 04.5 and
catas that once past At 2 - 2.5 x 10", which R * 1,2 In the figure we can see that wben
is a relatively long and thin column, that A - 0.55 the strains appear to be leveling off
bending strains rise Very slowly. For the to about 2000 uin/in as duration increases to

* sPterial of this test c - 36QOin/In, and 6 times the period. On the other hand, when
that value is reached vJe A/ igl 00 x l0 4  I a 1.2 strains for in exceses of yield obtain.
which indicates a very short, stout column. That yield strait obtained was expectd, sine

the Juler laid wee exceeded; but what is note-
The strain data for the other columns worthy is the greet sensitivity of strain

show considerably sore scatter than did appear to relatively omall charges In the ratio of
in the deflection curve in figure 49A. The duration to period. This agrees with thoorsti-
scatter is undoubtedly due to the changes cal work of reforences 5, 6 &cd I even though
in the section properties of those columns. those worka deal with other lad& functions.

The ourve of Figure. 22 suagests chat to avoid
laed on figure 19 it seems stoutness a precipitous rise in strain, rectAngular, columns

has its eost effect on deflection aqd bending should have periods equal to or nore %han the
#train when columns are relatively long. For duration of the loading.
relatively short colmns it has. little atvni-
liceoce on beding streams. If we re-plon Pigure'228 to include sther

straIn data, suat as fro columns . So and 7.
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sinusoidal loading on a column.6  And, in general a lateral deflection twice the initial eccen,.
one could conclude that this theoretical curve tricity. At zero eccentricity a column will not
could be used with some confidence to predict buckle.
motions of these columns when subjected to a
triangular pulse of a finite rise time, having 2. Dynamic compression loads as low as 70
a peak equal to the Euler load of the column. percent of the Euler capacity a column can

effect yielding strain8 in a column, sand hence
Figures 26 and 27 are comparisons between bring on an incipient buckling condition.

the experimental response histories of four
of the seven test columns with those histories 3. A column subjected to a dynamc load equal
derived from theory. The theoretical equations to its Euler capacity must be considered in
were taken from reference 4 and are shown an a priori buckling situation. The seriousness
below: of the situation may diminish as slenderness

and as eccentricity increases. But to take
advantage of these factors requires extensive

/Y,= 1 R cos 'wt R<l (5) data on duration of motions of foundations
1-R on modern ships when subjected to severe shock

levels from conventional explosives. Having
y/y R cosh (Lt) -1 R>l (6) neither extensive nor certain data on durations,

i R-1 columns designed to carry a dynamic load equal
to its Euler load invite collapse.

where w is 211/T
4. The theoretical work cited in this report
have not been rigorously validated becuse the

In the case of a load condition less than loading function in these tests have a rise time.
Euler load (R <1), the theoretical equaticn However, the experimental curves developed for an
overestimates the aotual response by a factor applied load half the uler capacity corroborate.
of about 2; note also that the paks do not theoretical predictions on the lateral motions
appear to be in phase probably because of the of buckling columns.
rise time in the test loads.
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DISCUSSION

Voice: In the present design environment many
use a handbook and find the allowable static
load on a column. But they are concerned with
shock response, and they want it to be
translated into stress based on the static
reliability function. Did you say the dynamic
load should be less than half of the standard
static load?

Mr. Ready: If you design a column so that you
allow only 50% of its Euler load, it probably
won't buckle. You certainly have to look at its
eccentricity and strength to know whether it is
in a strained condition so that buckling can't
take place. If you have a static weight on the
column, it may withstand motion for a while, 'but
that static weight may continue to collapse the
column. This is a guide to steer your way
through.

Voice; What was the pulse width of your dynamic
load, the peak load?

Mr. Ready-: The longest duration was about 120
.... milliseconds, and that was for 50% Euler load.
* That was the longest I could get. The durations

would drop down to 4-6 milliseconds for greater
loada.

Voice: Could you have higher loads for 20-30
milliseconds?

Mr. Ready: I could get a longer duration with
the lower load. It was just in the
characteristias of the styrotoa

Voice: Is. this to be used for design

M. ReAdy: I don't know whether the NaV will
offiFfally adopt it.

Voice: WMt was the major reason for the higher
rodiction an opposed to the experimental~reoulta?

Mr. Ready: It was a different loading. I used
a step pulse in the analysis. We used a ramp
p-lse iin the test. It didn*t make any

S4dirterence on the long durati triangular pulse
b4cause they convergd.

Pr.%@dqkft@ (Pffl Would YOU Comment On the
proloding or the column?

.... eady: I had it ais one ot th" termi. I had
aciount for tuti or dead weight on the

to.utm, but I didn't investigate that. I loakd
&t th@ pArtioular weight thA~ I used. In my

svqt it made about a 10% dittoenc. compared to
what it would have het: with wote weight. You
h. vo to e carefrul if you fare d signng &
ooluan, with a static loadi it can atfeot.it.
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Figure 3a -Post Test Photograph of Columns
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Figure 3b -Post Test Photograph of Columns (continued)
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Figure 3c - Post Test Photograph of Columns (continued)
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Figure 11 - Maximum Horizontal Column Responses vs. Eccentricity (continued)
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TABLE 1 - COLUMN GEOMETRY AND PROPERTIES

Column
Property

1 2 3 4 5 6 7A* 7B* 7C*

Length (in.) 45.0625 32.625 20.375 45.0625 44.875 13.0625 40.875 40.875 40.875
Sides (in.) lxl/2 112x1/2 3/8x3/8 lxl/2 lx1/2 1/2x1/2 3/8x3/8 318x3/8 3/8x3/8

Area (in.2 ) 0.5 0.25 0.1406 0.5 0.5 0.25 0.1406 0.1406 0.1406
Inertia (in. 4 ) 0.01042 0.0052 0.00165 3.01042 0.01042 0.0052 0.00165 0.00165 0.0015
Radius Gyration (in.) 0.1443 0.1443 0.108 0.1443 0.1443 0.1443 0.108 0.108 0.108
Offset (in.) 0.3125 0.625 0.343 0.8125 1.6875 0.219 0.875 0.875 0.934
Frequency (hertz) 22.3 43.1 82.7 22.3 22.3 268.7 20.5 20.5 20.5

Euler Load (lb.) 506.5 482.2 392.2 506.5 506.5 2973.0 97,5 97.5 97.5
Slenderness Ratio 312.3 226.1 188.7 312.3 312.3 90.5 378.5 378.5 378.5
Eccentricity Ratio 0.00643 0.0192 0.0168 0.018 0.0376 0.01105 0.0214 0.0214 0.0228

" Refers to Test Nos, 7A. 7B, 7C.

TABLE 1A - ALTERED COLUMN ECCENTRICITIES (yi)

Column

1 2 3 4 5 6 7* 7'

Static Load (IbtJ 17 17 30 17 17 30 17 17
y1 (in) AltejeJ 0,3235 0,648 0.372 0*405 1.7455 0221 1.06 1.13

*Tt 7A wd 76.

1 *Tst 7C.

TABLE 2 - LISTING OF TESTS AND NOMINAL TEST CONDITIONS

TEST NUMBER
C O L U M N. . . . .. .. . . . .. . . . . . .. . .. .. . . ..... . . . .. . .

noR * 112 A* * 1,0 A* *iOtha .

1 1E 2E OR1.0)
2 4A 48
3 SA s8 NA
4 2A 28 NA

6 3A 38 NA
0 68 6C 6A (R % 1110)

7 7A NA 1B (R v 21
7C In 0 8)

*NammAl value of mio tt ailad od P) to colWum Eu Load (OF). A PIPE .

NA -Not Aoigabw.



TABLE 3 - COLUMNS GROUPED ACCORDING TO NON-DIMENSIONAL VARIABLES

GROUP I
COLUMN VARIABLES CONSTANTS

1
4 yi/9 A/ 2. /r, Tco/Q5

GROUP II
COLUMN

2 9/r, Tco/ yi/R, A/124

GROUP III
COLUMN

3 A/q2. g/r. Tc./I yi/Q6

TABLE 4 - ACCELERATION DATA OF MASS IMPACTING ON COLUMNS

Root*1/ Rsl" R w"Other

Column
Ao 0 ho 'If 0 A* 0

Rai
1 1101 7.5 6710 2,53 2.6 53.5 2.71 5.3 _W.
2 1.12 12.7 24.0 238 .5.5 28.5 NA

3 1.09 105 78.0 2.67 5. 16ea NA
4 1 01 8.7 71's 2.75 3.7 18. NA

5 0J8 12.0 84.5 2J6 234 13.5 1.3 R/OR, 1110

6 5.11 92 27,0 12.2 4.7 7,5 1.13 ,4 96,

R*2
1 031 10A 114.0 NA. 1.0 111a 21.6

Atcolutatlon - A It's!
Ri m Tim - t e

QONulna V"l~ Of At
NA - Not Ap~lmW



*1

TABLE 5 - PEAK COLUMN STRAIN AND DISPLACEMENT DATA, R = 1/2 (NOMINAL)

Column EA tr  eb tr 6h tr 8v tr

1 104 NA 396 19.5 028 35.0 0.0 NA
2 319 7.8 343 10,5 0A2 10.5 0.0 NA

3 128 6.8 1583 25.0 0.32 13.0 0.0 NA
4 49 NA 1154 27.0 0.67 26.0 0.28 26

5 48 2.0 2107 45.0 1.13 45.0 0.6 45
6 * NA 184"* 9.0 026 20.0 0.12 20

7 201 5.5 3671 75.0 3.34 92.0 1.26 92

NOTE - Values listed above occur at time t e 0

NA - Not Applicable 6A - Axial strain Mn/in (Camp.)

*Geo effected by bending of column. calculated fb Banding Strain pin/in (Ton.)
strain v' P/AE = 727 pin/in

**Eb (b (Meas) + eaxlai (calculated) 
6h Midpoint Displcmet In

v - End Point Diplcm t in
b 1159 + 727- 1884 MrinRinSt - R Tmenrae=

TABLE 6 - PEAK COLUMN STRAIN AND DISPLACEMENT DATA R I 1 (NOMINAL)

Column A t b tr oh r 6V tr

* 1 340 6.6 3000 615 2.61 51,5 0.70 515
.2 914 .4 X01 22.6 2.01 22.S 01 .22.5

3 1042 2.5 569 i1,5 1.1 10.0 0.61 10.0
4212 65$la 10 115 1.06 11.5 0.0 0.0

6 126 46 114S 123 01 .12S 0.3 12.5
a * NA 1192 3,6 1.06 35 0.23 35

NOTE -V"UWed dwe ow, attklaet 4.

NA -Not ApplVcableA AW % (Comp)

Effcte bybouingin olun # Sendig Strain iM/I (Ten)

ah  - MlOOM ,140splem n*4a

*~t Rs Tin~nslme, awe

4

lit - Rlwi l lsauo



TABLE 7 - PEAK COLUMN STRAIN AND DISPLACEMENT DATA R OTHER

Column R (Nom.) EA tr eb tr 8h tr 8v tr

1 1 169 4 2514 26.5 2.17 26.5 1.21 26.5

6 1/10 484 13 312 12.6 0.0 NA 0.0 NA

2 242 3 1183 21.5 1.15 13.0 0.39 13
1 8 685 7 2622 7.0 0.03 1.0 0.0 NA

NOTE- Values listed above occur at time t < 0

NA - Not Applicable 6h - Midpoint Displacement in.

eA - Axial Strain un/in av - End Point Displacement in.

Ob - Banding Strain pin/in tr - Rise Time mwc

TABLE 8 LIST OF NON-DIMENSIONAL COLUMN VARIABLES R a 1/2

Column YMAX/Yl y / IR/r)2 x PE/AE Or tr Co/t ter/T x 10-3 R (Actual) A/ 2  O/T
1.866 7.1810"3  9,89 312.6 32.7 0.1673 0,45 2.46210 4  1.522 1.44 19,86x10 3  9.S 226,1 76.48 0.538 0.52 2.349x10 4  225

3 1,849 18.2 x- 3  9,93 188.7 101.25 0.8685 0,623 3,38 x10-4  6.45I 1.794 19.6x114  9.89 3126 37.93 0.1786 0.45 2. 10 4  1,62

5 1.647 38.9 x 11"3 9.89 312.5 52.54 02455 0.423 2.483gi0" 1.92
6 2.10 16,920i1! 3  9,74 905 13837 2381 0.611 1465si10 "3  7.3

7 4.15 25.93x10 3  9,94 3785 49.99 0.197 0,712 8415x10- 2.34

- reft to ace lmwton h tme.

TABLE 9 - LIST OF NON-DIMENSIONAL COLUMN VARIABLES A I

Column YMAXV l l V (t 2 t PSIAE t , t*? co1t tT sX 10 3 R (Aotual) A/t 2  01T

.. 1 9.07 3125 1SSO 0190 1,12 0.75
2 4.102 226.1 33.12 02437 1.11 . 1.23

3 6 U"E TABLE1 3 7 60.141 0.430 153 SEE 136

43121 17A 0.6 122 TABLE& 0A29

6 1,2 312A 17.011 0.067 1.31 0.31
6 S im75 90.8 10A6 11263 0.92 2.02

t~t"t ft"a allon 60v dMe.

TABLE 10 - LIST OF NON-DIMENSIONAL COLUMN VARIABLES R - OYHER

6COA"t VMAX/Vi YjAi (lit)2 #i FIEW vtn tof( furl x 10'3 A WAtiwi) A1(2  of

1 7.11 1,18*104  9,10 3121S 321 0.11. 120 2,482*10-4  0,1S

6 1.0 iG2X10 9,74 90S 0.0 0.0 0.09 1,48 k 03

2 2.086 25i.i103  9.04 3N3 423 0.16 23 8A1 10-6  0A44* 7"

-10 .64*10- 3  014 37'85 281 0,114 7.8 .41 i0WS  0.126

.#Mlft a.l - d" ,6i." tin*.
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LARGE DEFLECTION RANDOM RESPONSE OF SYMMETRIC

LAMINATED COMPOSITE PLATES

K. R. Wentz, D. B. Paul
Air Force Wright Aeronautical Laboratories

Wright-Patterson Air Force Base, Ohio

and

C. ei
Department of Mechanical Engineering and Mechanics

Old Dominion University
Norfolk, Virginia

Large amplitude respoeme of symetric laminated rectangular plates
subjected to broadband random acoustic excitation is studied analyti-
cally. The boundary conditions considered are all the edges simply
supported and all the edges clamped. The inplane edge conditions
considered are immovable and movable for each of the above cases.
Mean-square deflections. mean-square strains, and equivalent linear
kroquonces 4t various acoustic loadings are obtained for [0, U5]
and (0, t45, 90]g graphite-epoxy laminates. The analytical results
are verified through comparison with experimental data. The results
obtained-can be used in the sonic faiLgue design of camposite alr-
craft panels.

NTIROOtIOU11 Nigh streogth~atd high modulus fiber-

* . reinforced composite materials are.under dovel-

The neod to lprovo sotlic fatigue reistante opnot for use on aircraft. Many of these
of aircraft strueitres has becom incrwsngly coposite structural components are exposed to

* important at a result of military ad cwr - high intensity notie fields and are theroore.
.cial dlmands on current and future airplane subject to sonic fatigue, In the present
desitg. A significant nubir of theoreti- paper, the large deflection response of stwt-

.cal [14] and experieital invesigtions (7-il t panels subjeced to
on sic sonic fatigu- t e dlin o aircraft strut- broadband random acoustic e.itation i. tstudied
ture* have been undertaken during the past snalytically. The nonlinear equations of
seiQveral years to help provid the needed rnli" notion for sywmtatrlc laiate.s are derived in
ability. lie sAjority of Analytical invatt- tet of a stress function, V. and a lateral

a.. t iae to date have been tottolated within tho . displaement, V. neto the coiles nature of
frdaew-rk of linear or s-tl -deflection struc.- the problem, the study is restricted to single
sukral theory. loot results (5,., .12] on mde# rePonso. deflectido fuction repre-
vaidous aircraft panels have lhOn that hilh sonting the first *oe i asbod. Correspond-
*tie. levels In excwls of 10 db produce non- tlt to th assumed ode, a stress ftionlo
linear behavior with large defletions, T . sieatisfying the different Inplan edge conldi-

- lintiearnal §se often predict the toot-s i- tlots is obtained by solving the compatibility
square (= 4 ) anct h lid str*sses uell equation. a mo'tied 0310k0i'I method It then;@ labavo those oi' til@ oxporivst, andt the fro- apPlted tO thte WOiift 04iibt(0 Of wkitiot to

qulencies- of vibration well belou those of the yield a nonlinear tie-ifferentil equatto.1
xperiit 9, , It, 12. It ii well k#nw . Alsint that the excitatiollniIs auslti, the
that the prediction of ifoit fatigue life i equivalemt linesrlttiton oihonid t1] is .-
basod on KW stress and preduinais: response ployod In order to liearii this e6 ltlo".

qrgquonc? in conjunxtion with the itles vriius A iterative, protdulrv t introdueod to obtain
cycle to atiluto-t11) data. Therefot, the km a litude and equival"t lintar (or nun-
uie of lintat atialys results ili p Wor * *lina freq4uency at vaious acouitte Wiading
slation of painol service II.# for JO, n5]0 and (0, .45. 4o1 graphispoiiy

lainiates. 'Mt otil are) also obtaiied s
-ftions oft W iamlitude an at loItAtion of

S



interest. Solutions are developed for the out- W radian frequency
of-plane boundary conditions of all edges sim- 0 equivalent linear or nonlinear
ply supported (SSSS) and all edges clamped radian frequency
(CCCC). Two inplane edge conditions considered Subscripts
are immovable and movable for each of the above c complementary solution
cases. p particular solution

xy,z corresponding directions
The accuracy of the analytical method is 0 linear

investigated thru a quantitative comparison 112 major, minor principal material
with experimental data. Experimental response directions
data for [0, ±45], graphite-epoxy laminates Superscripts
from a previous Air Force sponsored program are k kth layer
compared to the analytical results. The com- T transpose
parison demonstrates that a better correlation
between theory and experiment is achieved when
the large deflection effect is included in the EQUATIONS OF NOTION
formulation.

In this section, the governing equations are
derived for a symmetric, angle-ply, laminated,

NOMENCLATURE composite plate. Using the Kirchhoff hypothe-
sis of classical thin-plate theory, the total

a,b plate length and width strains can be expressed as
A,O laminate atiffnesses
A* inverted laminate stiffnessvs Ca * * a
CC2,DID2 constant# X
err error of lineariationE~q] twan-square of q yr • l yE Young's moduli Wu major (lonaitu-
EIE2 dinal) a d mlnor.(transvers) •0 g * Z

principal material directions 'y *,Y
f equivalent linear frequency in Ha

F stress function
F1  constants Th@ strains in the niddle surfoec, considering

s 2 h@ar modulus Nrnan-typ geomotric nonlitwarity. can be
H plae ttI~hnss .prooded as

Rl(W) frequency respoas ftnetion
K .middle surface curvature
L mathematical operator a 0 * U.

N ~rosultant bending nma ,
. nu-ber of lyers ..

tresultant noal force ' I
U constant

p preasure lo-din- to A * .V
q adal adiltude or digplmckwnt

r+duged stifftnss
tramnstorst redud s. -...tiffness

rlignoh-towidth iratio Astimiltir imill etlopes 0"b- -, I @tc.) ok WI
au 3tocaorelation fungtion1 ao the firllihot 0i000W§1a, it.e uAldlo 4ut-

d S*ndimenslonal @Xvlt4Ci5o epeeat face c rvatur@ Can tbO @Uaaed as
• density paKm1t4r

.Xcitation pe @sure p( ) .t

,v dilpagott it M4 tUN& K. f
l, tt f~j efeto

ite .94y
+ ' nor naritw afi y ant a

C iO ti~a .itarro plate Ouito" .~ obtuifle by applyingctoticinfit tirc qui11biiro ot wi eloent of Vi, kth

'imnsonl reqcacyog i slatto 14iW ti~d tdtary itwtrtis totme,
and taiidnt Ie ced

tut~e low*if*g OquAtions of icvati"0
* tuenctia ctefl.c Int §sti" pit 41 0 IY&y h 0 Cl )
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HETHOD OF ANALYSIS F F (26)

P

SIMPLV SUPPORTED EDGES. Consider a simply
supported, rectangular, symmetric composite With the assumed deflection W given by
plate of dimensions a, b with the origin locat- equation (21) and stress function F given by
ed at the center of the plate. The boundary equation (23), equation (15) is then sitisfied
conditions are: by applying a modified Galerkin's method:

x a +a/2: W O ffIoh + LW - O(F,W) - p] Wdxdy

D 11W xx D 2W yy + 2D jW, y N 0 b/2

y a b/Z: W 0 "-b/ (N) -a/2(W'x)x --42dY
DW DW, * 2D~5W, * 0 f[ b/2

D12Wxx * D22Nyy + y 0 j (Mx) ) x a/2 (n x)x a/2dy(20) -f 1
For tiho inplan&, condition of zero *hear stress-b/

at the edges, the deflection function is a/2
assumed asJa (My)y (Wdof-a/2- "b2N )Y -i d

-£ q(t)h(cos Nco X1) (21)
a b (a/2

Substituting 0quat ion (21) forW in pquation 1 M -(W b 0 (27)
(18) and 3olving it. the strego function is J-4/2 Y bI2(Uy)ymbI d

obtained gs

F & V * V (2) which yields a Modal equation of th@ for

ift which the particular solution to

.h Cos 12 V

P pCo .

p 1 a

Stwo 0@t oatnkF canSOL bo @sptrevd in ka sim
tmof w t at ob*n~ s

• • ot- e wentary foolatim I + do l no bo

obtsino'd -4"6 that It idtiolitA ZIL Vo..+ 4--+d-. .. -. "

I

-. I' s *

tho 1,1,w b.wad-, +,++ .. ,

Ta

fp b/Po dy a1 Wogto. v. 0 ii t i+t t radi mlm|qu~w. A i s "do"++

*~~i~t obaie40ctht' satisfie bautd90eo t AN

SpvI cwhe~tit0o ism %bear adn Ittess acy Sot 4tIs -

- dent. The I~~~4ea r V40-oe 0 ston~nsi).. 1 * 0 or terao ear thre aod~~i tot aast

. •displ~a~st it the ov ses a-t

bytuiN 580' of thebe eatdtions. it tati he
w htft that F, Ai *tgo tot uWvAIe iiplaw"

q4hg6. "ieO~
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where
NxXt 'yx yy N W,.= Nzt Y 5 A - (13)
*N)j.yy . p - A1

where N and M are resultant normal forces and Nonvanishing components of the inverted lami-
resultant bending moments, respectively, do- nate stiffness A* are also given in Reference
fined in the usual manner of classical plate 16.
theory, and the average mass density of the
laminate is defined by The Airy stress function F is defined such! r hi2that

0 rJh/2 ao(k) dz (6) NT T {F,yy F. Fxy (14)

the distributed transverse load ii simply Using equations (3), (9). (12) and (14) in
equation (5) leads, to the equation of motion in

(k)h the transverse direction ase: -h2 7OhWi LIW - * (F,W) - p 0 (15)-

The constitutive rel~itio for a symetric where
laminated composite plato is givon by:

.l -i " : . 1

JMN [A]$O LI U Y~t ~ *2D

.*..
0D, K (6)i 34- ll ) 6

whore

NT.j N N

-t IY x Y r.#. O ."ll) (16)

.. , Ito goI to $(POW Fl -] "

1K K K I. Th compatiilit Itql.,.uation ts dariv.dx 1W fto* OquationC0) and Id Wtftna

.A.
" '44 Ot IS I * tt ill (t .fw Ai 4V i

S Yu Y 0 (17)

1£-'1 -*] *

(Alij Dij) 01 L/ (1.0m~ i CIO(1) V5II o4tiomt (12) 11 (it.)io (7)

sit #11"a b~1aos
ArSe th@ fwed, P-04eed at i 0

IIts

. AO -r A

OL4-kAtis W09 ) MAn 1A) StO th@ Oe ~ f

,e11 rA ~ *1I~ sjfnd~er~~s ts~~ta isdtho Oiquivia
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edges of the plate is assumed as

x =a/2: F,X 0
(W + c o -+ o 2-x)(I  +Cos ! (36)

4 abffe 0  
.W, 2) dd

x 2 .~xd=
The clamped support is simply

y •±5/: Fxy 0Y±b/2: F, 0x 
= ±a/2: W = W,x = 0

y 2W.)dxdy 0 (31) y= ±b12: WW, O (37)

Introducing equation (36) in equation (18)

The complementary solution is assumed as and solving it, the stress function is obtained
as follows

2S2 + 2 F = F + F (38)
F _ + Y: (32) c p
c y 2 x2

Upon using relations (12) and (21) and enforc- f * 2h2r2  C 2wx 21r
ing the conditions of equation (31), Nx, Ny, P 32 OS
and Nxy in equation (32) are obtained as

* ,,_ 2x 24wx. 4,

2h2 2 + F C08 o--x-€ b0 M F20 CO s + F02 oS4x 8(A-IA1 -A!2')  aT " 4x 12-osLm o 4
* F21 COS aCos + F2 o o (39)

q2h2l,2 A

NY(33) lv ~ 050

The particular solution F has been ob- where the constants Fij can be expressed in
tained and given in equation (3). The total terms of the laminate teffnesses and the
stress function, therefore, is F = FC + Fn for length-to-w dth ratio ofthe panel (r s &/b) as
immovable inplane edges. Substituting the
stress function F and the deflection W in

equation (27), the modal equation is obtained
as follows p10  _

A22
4+ q + (B + El)q3  p(t) (34)

P C0 m1

where 
A11?

4

4 Ah A*I2rA A22 + (2A12. A;,)i2 A* l

B0 "8.!-- .~",- * * *2. (35)

AIIA22- AllP20 2 1
16A2 2

The term 6c is an addition to thr nonlinearity I
coefficient due to immovable in~lane edges; the rOl -
nonlinearity coefficient 0* is a nondimensional 16Allr4

parameter. Equations (28) ana (34) represent
the undamped, large-amplitude, modal equecions 1
of simply supported rectangular, symmetric FI
laminated, composite panels with movable and 16A2 2 + 4(2A1 2  As)? 4 Alr

immovable inplane edges, respectively, This
nonlinear modal equation will be solved by 1
employing the method of equivalent lineariza- P12 (40)
tion. All + 4(2AA * A.G)w 16Alr~ o

C.{PED EVGM The deflection function which
satisfies the clamped cindition on all four
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It can be shown that for movable inplane edge Using equations (32), (36), and (39) and apply-
conditions [eq. (25)], Fc = 0. Hence, ing Galerkin's method yields the modal equation

F P p (41) + w2q + + 8 )q3 P(t) (46)

0 p c m
Introducing the expressions for W and F, equa-
tions (36) and (39), and applying Galerkin's where the additional nonlinearity coefficient
method: due to immovable inplane edges is

ffCPhW + L1W - *(F,W) - p]Wdxdy 0
0 Sc € e2h 2

pb
4

yields the modal equation

1!" A Z- A12r' + Ai
0__C 822 r' tA2- *2 4 kl+. P-q 0 6q3  p) (42) 8_ (

• Seyh 4 AIAi2 -A!' ) 47
0 p m

where
2 2 Eah 2

W0 0--h Equations (42) and (46) represent the modal
Pb4  equations of undamped, clamped, rectangular,

symnetric laminates undergoing large deflec-
U *B Hsh2  tions with movable and immovable inplane edges,0 p P ob respectively.

DAMPING FACTOR. It is known that damping has
9 h2  a significant effect on the response of struc-
-6- tures. The precise determination of the dam:-

ing coefficient of a given structure, therefore,
should be emphasized. Two methods commonly

_164 used for determining the damping characteris-
0 • D11 + 2(D12 4 2D66)r2 4 302jrl tics of structures are the bandwidth method

9E~h3r4) and the decay rate method, In the bandwidth
(44a) method, the half-power bandwidth (a 24) is

measured at modal resonance. In the decay rate
h ' *method, the logarithmic decrement (- 2wr) of

AP (F[lo # F0I 4 P11 + Flo 4 Fog decaying modal response traces is measured.
The values of damping ratio 4 (- c/cc) general-

* V 21 + F12)] (44b) ly range from 0,005 to 0.05 for the common type
of composite panel construction used in air-

in whih 0 is linear radian frequency, Sp is craft structures [4, 12, 17]. Once the damping
the nonlinearity coefficient, and m is the moos ratio is detertined from experiments or from

coefficient. The linear frequency X and non- exasLing data of similar construction, the

linearity coefficient PO are both no~dimonsion- modal equation@ [eq@. (28), (34). (42), and
a parameters. p (46)] can be expressed in a general foram as

For the case of the clamped plate with q + 24w64 4 W-q +aq) . g (49)
* imnovable edges the complementary stress func- m

tion is assumed as the form appearing in fiqua-
tion (32), Upon enfor.ing the inplane edge The method of equivalent lnearivation will be
conditionsem. (31)],_it can be shown that the used to obtain an approximteo MS amplitude
constants NX, Ny. and Rxy are obtained as from equation (48).

* * A iETItO OF I QUWALET LTINAMZATION. The basic
3 aht An AllaI idea of the equivalent linearization method

32(A',A' " A4) ta - [ i13, 18, and 19] can be obtained from the
linearised equation

• . . -l+ l l 2 2S SCA11A22 - A12-) \b t  aS/
whore ti is an equivaletnt linealr or nolinear~t

frqutcy. The error of liteariuation, a

S0 (45) raudom proceos, iv

err (0 - ))q * (s)
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which is simply the difference between equation
(48) and equation (49). The method of attack
is to minimize this error in a suitable way. E[q2] . ISM) (57)
The usual choice is to minimize the mean-square 4m2COal2
error Elerr2 ], that is

a-LEerr2] = 0 (51) In practice, the PSD function is generally
U-2 given in terms of the frequency f in Hz. To

convert the above result one can substitute

If the acoustic pressure excitation p(t) R 2wf
is stationary Gaussian, is ergodic, and has a
zero mean. Then the approximate displacement
q, computed from the linearized equation S(f) (58)
eq. (49) , is also Gaussian and approaches s(7) - (58)
stationarity because the panel motion is stable.
Substituting equation (50) into equation (51) into equation (57); then the mean-square peak
and interchanging the order of differentiation deflection becomes
and expectation yield

(W2 - S2 )E[q2] + Bs[q4] - 0 (52) 328 for Simply Supported Edges

which leads to the relation b,-ween the equiva- [q2 ]
lent linear frequency and the mean-squar. 328 f adipaeen sOT for3 2  Clamped Edges (59)
displacement as 8CgZ

- w + 36E[q2) (53)

E2 h
2  The PSP function S(f)/2r has the units (Pa)

2/Hz
Dividing both sides of equation (53) by- or (pai)2/Hz, and S in equation (59) is a
yields nondimensional, forcing excitation, spectral

X2 X2+ 3 [q (54) density parameter defined as

0

where I is a nondienional equivalent linear -o " (60)
or nonlinear frequency parameter and E[q

2 ] is

the maximum mean-square deflection of the lami- I
noted composite plate. The linear*frequencies
A and nonlinearity coefficients 0, are given
in equations (30), (35), (44), and (47) for The equivalent linear frequency parameters X2
different support conditions. in equation (59) can be determined through

equation (54).
The mean-square response of modal ampli-

tude from equation (49) is SLTION PROC-RE, The mean-squar displace-
ment E[qa] in equation (57) [or eq. (59)] is

Elqa, scilslla& (55) evaluated at the equivalent linear frequency n
(or h) which is in turn related to E[ql]

through equation (53) [or eq. (54)]. To deter-
where S(C is the P81 function of the excita- mine the man-square deflection, an iterative
lion p(t). The frequency response function procedure is introduced. One can estimetv the
1() Is given by initial moan-square deflection £[q2 ] using

linear frequency w0 through equatian (57) as

II G).a (56)

For lightly damped (U 0,05) structures, the
trequcncy re~pono ourei e will be highly peaked This initial estimate of q] is simply the
at the equivaltnt linear frequency a (not at, mean-square divplacement based on linear theory.
as In tho al-defleetion linear theory). The It can now be used to obtain a refined estimate
integration of equation (55) can be greatly of a, through equation (53): W + 3RE[qj];
itmplifid when the spectral density of thehon£q ] is computed Irouggh equation (57) as

oxcitatiun I* slowly vAryinq In the ogibor-
hod of' t and S(O) cdn be treated as constant aql, u V34 (
in tle frequeney bond surrounding thiA non- (62)
linear rtsonance peak 1i then equatido (55)
yields Am the iterative process convergus on tile oth

cycle, tle relations

to



+ 2 2-' ~ + A~A* 4'x 1

2 - 2 +3E[Cq.] st 2n. (63) a 4t [AF w 2co

become satisfied. In the numerical results 4r s Z 2A 7 A )r7 A cos 2Cos z.

presented in the following section, 
convergence

is considered achieved whenever the difference A* r
of the R4S deflections satisfy the relation 1 A+ 1 C_x

16' + (2Af'2 + *667*A, o b

(64) A ,. * 40 r2 
''

10-3 2-x*
4

Zj 2.~r'*1A~ 1 . C r

(66a)

STRAIN AI STRESS RESPONSE. Once the RIS dis- b2  C
placement is determined, the strains can be yq (1 * o, cos -Z

obtained from eqs. (1), (3), and (12). For

O simply supported, ymmetric laminateu with
immovable inplane edges, the strains on the . ,2 2 [ L, :. .
surface (z = h/2) of the plate are given by x 1 '

(656h)

q~alion (6Sa o. S~b)v~(66b)

Ar

For ~; fa~l npaee ., thS las A*uin* '~

For clamped, .yswottrc lamin~atog with
itaovabla implane edge. te atraln on t~he , .#
surface of tha pl~to are Mivola by:

T4*A1A ." r

l '~or movabb Inplano edges , the last tota L1ar

osquatoas (66 ) and (66~b) vanshe ,
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RESULTS AND DISCUSSION The normalized mean-square maximum strains

Due to the complications involved in in- at the center of the simply-supported square

cluding multiple modes in the analysis, only a plate with a damping ratio of 0.02 are shown

single mode approximation was used in this in figure 3. Results based on small deflection

study. The assumption for fundamental mode theory are also shown.

predominacy is admittedly over simplified; the Figure 4 shows the maximum mean-square
conditions under which this is a valid approxi- Fetio hoa s hfuntion uf th aexciatio

mation remain to be investigated. This single- deflection as a function of the excitation

mode approximation was first presented by Miles spectral density parameter for square, clamped,

[20] and its use has become known as "Miles' symmetric composite plates with [0, ±45]s and

single degree-of-freedom theory." This approx- [0, ±45, 90Is ply orientations. The mean-

imation is commonly used for all sonic fatigue square deflection of clamped plates is general-

analyses [2] and a simple model sometimes helps ly somewhat less than that of the simply

to give basic understanding of the problem. supported case. The results on small deflec-
tion theory are also presented.

Using the present formulatiou, 
nonlinear

responses of symmetric laminated composite Figure 5 shows the frequency parameter as
plates subjected to broadband, random acoustic a function of mean-square deflection of square
excitation are studied. Both simply supported clamped symmetric laminated composites with
and clamped out-of-plane boundary conditions the above ply orientations. The frequency
are considered. Two inplane edge conditions parameter corresponding to zero mean-square
considered are immovable and movable. In the deflection is the frequency based on linear
results presented, the excitation power spec- structural theory.
tral density function is considered constant
or varying slowly with frequency in the vici- Figure 6 shows the normalized mean-square
nity of the equivalent linear frequency and a maximum strains at the edge of the clamped
representative, graphite-epoxy with material square plate with the above ply orientations
properties: and a damping ratio of 0.02.

E, - 17 x 106 psi (117.9 GPa) The effects of aspect ratio on mean-
square deflection are shown in Figure 7. The

E2 w 1.7 x 106 psi (11.8 GPa) example is for a clamped symmetric laminated
composite plate with a [0, t45] ply orienta-

G12 w 0.65 x 106 psi (4.5 GPa) tion and a damping ratio of 0.02. it is clear
from the figure that an increase of r will

D12 a 0.30 cause a "closing" of the curve. This occurs
because as r increases the panel becores less

iA used in all computations. Mean-square dis- stiff, and the muan-square has to be finite.
placement, equivalent linear frequency, and
moan-square strains are determined for Figure 8 shows the e~fects oR aspect ratio
[0, t45J, and [0, 45, 903s graphite-epoxy on the maximum moan-square strain for clamped
laminates of difterent aspect ratios and [O, 45] laminated composite plates with a
damping ratios at various excitation spectral damping ratio of 0.02. The aspect ratios
donsities. investigated are: 1 and 2.

Figure I shows the maximum (center) man- Figure 9 shows the effects of d4mping
square deflection versus the spectral density ratio on the moan-square deflection for
parametm r of excitation for square, simply- clamped [0, 45] s laminated e posite plates
supported, symtotric composite plates with with an aspect ratio of I. It is clear from
[0, A45] and (0, t45, 90]s ply orientations the figure that the precise determination of
atd with a damping ratio of 0.02. Te moan- plate damping is important.
square defloction of the immovable inplane
edges ease to less than that of the movable The accuracy of the anslytical method is
edges: that is, as the inplane edges are investigated thru a quantitative com arison
restrained, the plate becomes stiffer. Results with experimental response data for [0, t451
of the meo-an-squart deflection versu4 forcing., graphite-epoxy laminates from a previous Air
spectral density based on swall deflection Force sponsored program. Details of the
theory are also shown. oxperimental program can be found in Reference

12, Table I lists the results of tho comptri-

Figure 2 shows the frequency parameter son, Shown are the analytical and experimental
versus mean-square deflection for square, strains versus level of excitation. Tie com-
simply-supported, oymmtric laminated composito parison demonstrates that a better eorrolation
plates with the above ply orientations for a between cheory and experimont is achieved when
datping ratio of 0.02. Vie frequency parameter the larKe deflection effect is included in the
corresponding to zero mean-square defloetion Is forulatiton.
the frequency based on linear structural
theory.
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DISCUSSION analysis and see where we were.

Voice: I'd like to comment that actually the Voice: I heard you mention that you have
life would be affected by much greater than two single mode response when you displayed the
to one because the S/N curve Is fairly flat. In frequency response of the measurement.
other words, a small change in stress or strain
gives a tremendous change in life. So it would Mr. Wentz: Yes.
be a tremendous difference between the linear
prediction and your predictions here. Voice: How can you judge the modal response;

there were so many peaks?
Voice: How many modes were excited signifi-
cantly in your acoustic test? Mr. Wentz: There were peaks, but they were 25-

30dB down in amplitude from the main response
Mr. Wentz: There was just really the one mode mode.
at the lower level for the panel that we looked
at. And as you would increase the level 3DB at Voice: Was this a transfer funtion?
a time, more modes would come in to play
arbitrarily. At the higher level, as each mode Mr. Wentz: No. This was a power spectral
appears when you increase your excitation, the Q density function.
of the peak acts as a hard spring oscillator. Voice: I think you would have better luck
The peaks just really broaden out, and this getting a transfer function in steel.
brings up another problem in trying to use
linear damping theories to determine the Mr. Wentz: Yes. Classically, in sonic fatigue
damping; you can't use a bandwidth method since we use the Miles single degree of freedom theory
there are other factors. which Just assumes that damage comes from the

main fundamental response mode. There are other
Voice: You made your analytical calculations modes. There were other peaks, but at the lower
for the fundamental mode only? levels. These peaks were at a level far enough

down that they wouldn't affect the damage. At
Mr. Went?: Yes. the higher levels, it was very broad.

aVoiec: Are you comparing the multi-mode test Voice: Why is it so difficult? You might have
response wit.h the single mode analytical some reasons. Why can't you get white noise
predict ions?. exoitation?

Mr. Wentz: Yes. Mr. Wentr: There are noise generators that do a
much better Job.

Voice: Was that part of the error?
Voic Generally* not at those high levels.

Mr. 1 @ent: Yes, at the higher levels. We are
in the proencs of incorpor4ting multi-moftl Mr. Wentat Yes, but I have seen a few spectra

areaonfe and looking ft varIous mode:. You have that are quite, flat.
game v,.re omplextien because you cAn't just
aininue on value of damping. You have a Voicet ettert
4itferent damping r4tio for eah mode. So we
are extending this work to try to be more Mr. Wentzt Yes.
acurat. - We wantqd to do a fundamontal

01



DYNAMIC CHARACTERISTICS OF A NON-UNIFORM TORPEDO-LIKE HULL STRUCTURE

Azriel Harari
Naval Underwater Systems Center
Newport, Rhode Island 02840

The vibratory response of a torpedo-like structure is investigated
here. The torpedo hull is characterized by a long cylindrical shell
where the length-to-radius ratio is large. The cylindrical shell is
built from several sections that may differ from each other in
thickness and material properties. The responie of the structure to
various loading conditions is found and the results presented.
Reduction of the vibration level of the torredo hull at the
frequency band of interest can be accomplished only after the
response of the structure is well understood,

IN4TRODUCTION

Self-noise is a major handicap to the cylindrical shell with end plates. The load
operation of a torpedo becalse noise generated is arbitrary and can be placed at ny point on
by vibratory sources on the structure the shell or end plates. The various sections
interferes with the functioning of instruments of the hull can have different structural and
attached to the shell. The excitations of the material properties. Since the primary
structure are due to various sources such as interest of this paper is the shell vibration
enginc vibration, propeller shaft excitation, at high frequencies, fluid mass loading can be
and hydrodynamic fluctuating forces on the neglected. Radiation damping affects the
shell. The torpedo shell is composed of mtanitude of the vibrational modes but not the
s-veral sections. The various segments of the relative transfer impedance. The analysis
torpedo hull may differ from each other conducted here ts for the In-vacuo vibration
structurally and can be made from different cf non-uniform cylindrical shells with end
materials. Structural discontinuitioes such as plates. For the sake if completeneas and
stiffener* discontinuity and joint comparison the mode shapes for low frequencies
dticonttnuily were studied provio4sly by the and for uniform shells are also included.
author. t,2, Different eometric and
material properties for the various sections - CYLINDRICAL SHELL ANALYSIS
snd end plates are studie4 here. The
structural diseontinuittee introduced by Consider a thin cylindrical shell of
cylindrical sections of different geometric thickness h and man radius a. The mideurface
and material properties hav an effect on the of the shell is described in term of an x,
vibration of the hull And on the transmission 0 coordinate system. The x coordinate is
of power along the 0hell. In order to treat taken In the axial direction of the shell and
and control the level of vibration, it t the, 0 coordinate in the circumferential
first required to know the dynamic response of direction. The comonents of the itdsurface
the strueture in the frequency band of of the shell are designated by uj v, w (Fig.
int@erst. The r@sponoe of the transducer. 1). The, equations of shell motion governing
array panel to vibratory forces on the u, v, and v Are the Sanders-Koiter 4 l shell
e{trueture i of pArticular intprost. equations. The #quationa are written a
Constrained layered plstte and ohells can h, followet
used selectivly for several sections of tho
hull to reduve the vibration levl. In order * 1 1

to dxtign the proper conAtrained layered erags u 2 0- 00(i4bWu 0
@etion for tt,# Ahoell sections and plat#s, tho ,

predominant vibrational wavelongths, the tt@ar 4 [1* v) - 2( -v)b
(iold solution%. and othier charactristics of 2 a
the shel vibratin a:t tho frequoncy band of I
lnterest sort h knoun. Tho vibru tio l sode i(l - v)bw(o - VVC
n.'ar the lnterlace botwooo thu sectioe of
different Naterial propertios 1"o of porticular 06J(2100( -%12)u o
Interest. The analysis herv cotsiders 4

Ila-



(l + v) - 10 - pb8 + A3
6 + A2 P

4 + AlP
2 + A0  0 (4)

Eight roots,
+ !(I - 00 + tb)v,, + (I + b)vo8  (P,)n = + (Yi,)n - 1,..., 8

+b(I)(3 - v)w e + bwe96 - w0  are obtained, thus yielding eight independent
solutions. Using Eq. (1), the constants C

- p(a2/E)(I - -2)V 0 , (1) and C*" can be written in terms of constant Cn .
Since the analysis is done for every n component
separately, it is convenient to drop the sub-

- Vu - 2 - V)u ,  script n from subsequent expression and dis-
cussion, with the understanding that the analy-

v) - sis is for particular n mode. Exp(iwt) is

Svbo 0  v0  also omitted !rom all subsequent expressions.

+b( Im + wOO00 + 2w 0) + The solution can be written now as:

+ p(a2/E)(1 - O2)N 0 , w a CIe I + ..................

where 
ePahr ,- ( kia -: la(), ( )0 +ce 8

- ) ) b h2 u a CiU(Pl)e 2u (P2 )e .......

E s Young's modulus, Poisson's ratio is de- + ejU(%)epS  (5)
,'.oted by u, p is the mass density, and h is
".he thickness of the shell.

The.displacements w, u, and v may be v a IVCp I e2 (P2)* +

expanded by Fourier series c8 Y(Po)ea

uVeot) "E ncos(nO), whera and 7 are functions of Pc w, and the

*. 0 sholl geomatric and material propotles.

- ;Once the displacements are known, the

u t) (trese-resultants can be obtained. The stress
u(2O =€Os(r) e(2) s reultants associated with the boundary (
"WO Constant are as follows:

~2

E 0 V' " " X#( " N xO ,O

on th@ circumferantial 0 coordinate di c- N N N is No. and He
tion. The solution is thea sought ift tho fa-
lowing forts

where V~ *- r[u V~ -)j

* uv((,t) - eCd5XP(Lt ' Pn), ,) )
N (I- . ) (y u.

i ,Ac&~ 02 t~circular fvequoficy a:d vwher@ t4 I i (A O
C", Cj, dnd C are constants. Subgtituttin 1 - *.V a,

Eq. (2) and (3) in Eq. (1), one obtains three

homsogeneous SAlabrAle equatiolul on sho cmistanto t 3 1u L
CO. C*, C. ,, Me detivinant of i ,hh 4hol tot to 2 V +4 VCJ

soro yields a fourth-ordor equation an el'.
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CIRCULAR PLATE ANALYSIS
Un  U, cos'nO), Vn 

= V, sin(nO).

The solutions to the problem of bending
and extensional vibration of plate are un- The solutions for V I u* and V % u* for the n

th

coupled and can be solved separately. The component of the displacements can be written

differential equation and solution for the nor- as follows:
mal displacement w of the plate are as follows: a , 1 aVn

Eh3  Vw Ph L'.w - 0 (6) r r BO

a [A* JN(kr) + A* Yn (kr) cos nO,

w(r,O) - wn(r) cos (no) eiwt (7) 1

V Vn + Un

w [A Jn(kr) + BYn(kr) 
(8)

+ C~n(kr) + 0 lKn(lkr) [B" J(k'r) + B* 'Yn Wr)] sin no. (15)

OW2 From Eq. 15 the following expression for Un
where 0 - 2 12(1-v 2) (9) and V" can be obtained:

and A, B, C and D are constants. r) w[A dJ(kr) A + B n(k'r)

The differer.tial equation for the 
I2

extensional vibration of the plate is as fol- Yn(k'r) "1
lowst: B2 a r J cot no,

U V2u +0' * U) V V 0 u u (10) . Jn(kr) Yn(kr) dJnl(k'r)

where u is the in-plane vector displacement and r r

where dy( k , r)]where ..li._ '* " " v(l-2u a2 -dr] sin nO. (16)

FORCED VIBRATION

2 (14E The structure is loaded by harmonic in

time fore. acting on the cylindrical shell and
end plates as shown in fig. I. The load isTht sealer and arose product of Eq. (10) yieldti expanded by Fourier series uroond the

. circur-.reonce. The cylindrical shell to so&-
V2 - ( _q. )  

* (* 0), (V mnted at the point along the shell where
.. . there is a change of thickness or material

proprti@e and at any point on the shell whor.
S 1 ) 2 the load is applied. The boundary condition

V- (V x a) 2 (V Uj). (12). imposed at the Interface between the #ePen0k
thero no fore@ is being applied i that tho

s iia displactments and the atres9-resulAtonts be
Substituting u • u* *~t in Eqs. (I1) and (12), continuous across the Interface. uL. -K

one get the folloing differential equations 0,U l 0"L-Vt' 0$ L.. Vit 0O, uL-uit.O, vL-vR*,O,wx -v0-,
(V2 .k 2 1 (V , ) -O (1))a

I2 0 k'2) (V x u*) 0, (14) QL -Q i 0,& vL N0, . W .0

HL - - 0 whore the superscripts "o and

wtre k2 "(1-v2)W2# " refer to the segment to the loft and to" - vthe right of Ph* interface. Tho boundary

condition at the point here the link force is

2 (.v) W applied is the #m eacept for tho discoo-
Stinitsy condition of the appropriate

itres -reoultaut. for normal force, qL
lat U and V be the eomopotnts of the dias QR ." . or arial fore# ot the

plaement vector in polar coordinsa cylindrical shell, K t.
. * V!0. The displacem wet Vetor r e at -tith

tan be eopahdedi as before by Pourier t ies, boundary conditloit betwon the eyliidrical
The nth eomnnts of the displacement shell ad the plate is similar to the Qt0
vector can be urittan &at betvee the tagmeas eept that the
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appropriate elements of the shell and the modes and are not discussed here. Figs. 3-6
plate have to be matched, i.e., wc - - Up, present the response of long uniform shell
etc., where the subscripts c and p refer to with end plates (Fig. 2) under various loading
the cylindrical shell and the plate conditions. The location and direct:on of the
respectively. exciting force, on the cylindrical shell or

the end plates, are marked by an arrow on the
The overall boundary condition results in outline of the structure. Figs. 7-10 present

a set of non-homogeneous algebraic equations results where non-uniformity of thickness or
for the constants ci. The number of unknown material property were introduced. Figs. 3
constants is eight for every cylindrical and 4 show the axisymetric n-0 response of
segment and four for each end plate. If the the structure. At low frequencies the
load is on the end plate, the plate is response of the structure under normal force
segmented. The outer plate segment has eight is limited to the close neighborhood of the
constants, and the inner one has four force, Fig. 3a. As the frequency increases,
constants. Once the constants are found, the the vibrational mode changes to an overoll
displacements at any point on the structure bending mode, Figs. 3c and 3d. Under axial
can be found by using Eqs. (5) and (16). force the shell response, at very low

frequencies, is primarily translational, Fig.
NUMERICAL ANALYSIS 4a. The mode changes to the first accordion

mode of the shell and bending mode of the
The analysis discussed here is applied to plate as the frequency increases, Fig. 4b.

a cylindrical shell with end plates as shown The response of the shell changes to an
in Fig. 2. The length-to-radius ratio Is L/a overall bending mode as the frequency gets

12, and the thickness-to-radius ratio for higher, Figs. Ac and 4d. The value of the
the shell and end plates is h/a 0.03 except positive root for p2 increases with the
when indicated otherwise. The shaded shell frequency. The effects of the nearfield

* sctions shown in Figs. 2b and 2c can have solution at high frequencies are thus limited
different thickness and material properties. to the close neighborhood of tit force. At

.,, Poisson's ratio is equal to V m 0.3. The high frequencies the bnundary conditions at

frequency parautor ii • the location of the force and between the
e ic a i f shell and @nd pl tes do not have significant

The fare para-twrhore P is effect on tie character of the mode shape,
Figs. 1c, 3d, 4c, and 4d. Figs. 5a-c shAw

tho munitnd, of the harmonic, in time line, th n't response of Che shell to a normal line
force applied uniformly on an Arc b of the force. Figs. fa-6c show the n-2 r@ponse of
circumfer@ce (k a 0.1).. Only partial results the shell to 4 normal lin force on the

.plate. The oxciting fore for the exampln .o
ar prosnted due to the largt variety of show" in Figs. 7-10, is placed at the conter
casews. Frequency sweeps were conducted for of the shell, And non-uniformity such as
several leading and struetoral C¢tfigura- change of thicknesis or mterial is madea on
ttons.. Tit@ results at@ presented in Figs. part of the structuto, Figs. a 4nd 7b. show
3-10. The normal displacemtnft w and the aial, the no* response of the shell showni in Pt., tb
(rai al for the ptat) displcc~nnt oi ar@ wAerc the thick us-to-radtus ratio for the
plorted seParately on an outline figure of Cho shell slec.tiop M the right side (shsdod) is
strocture. The combinod d&formatlon o tl.o h/a0.O6, whitl the ratio for the rest of the
structure du4. to the displaemnt.i Wand u Is structur# i h/a0.0l. For intormdiate and
plotted only for 4 f@ c §se as shawn to Figs. high frequentes0, the nearftild solutions do
a aind Sb. This t becaue the different not have any slgMficsmt effect. AS CA be
s1Cles for the structure and the Axial soen, the shell soethna vibrat In twe
Siepl+gEswents frequitly cause kMvaeptuble differnt uanle4ths In sceordoocs with the
distorti. h PlottItng scale is e4Jtl1ctd thick"@#s of each svteton. Pigs. Ba-U show
fotorty f requenfcy pa4raeter beause. the the ns0 responsed of A hull wher# the
manitu d of the response dan va y by A lAt o thickN#'-to-radtus ratio of the end plat* o

go~itl~o tot differont valueso atsho frequencuy te right (Pig. 20) is h/rmO.1, tA1111 shd
paraator. t 1 4dju.t**t ismadi ' Uch that rittn for the teas of te struetat Is
theo Platted ordiato of steo un!m 4ftisscs- hla"0.03. Figs. 9a-9d show the w'*0,2 response
Wslnt is a1 tiedlue 44 ft r al tS. The Wati- of a shell where the modulus of aistlcy tor

w W the righit segment 01it. 2b) Is tht@e siaes the:OsF mo die pl-atenuo-o~dius rttt An 4t0. Ato VaW (Of the rest of the StruCtute
typd Wlow glas fi4ute far th@ in"it Ital Thidkfws-to-radis raltia is h/a-0.O tot the

shel StrS he tM cd pate, whre s Ste ylifdrital tha~ t,14 h/a"O.2 to; the dd
0hell 410| 1 tho. t d ood pstou,.trhot ;1 1 s tho 'plat@*, FigP . 9a +f) show rsponse,I end figs. qc-d show the nfl respolo. Pigs,

sasaw diplrasns'o-adueratio tW the, 50-lJot show the ftO,2 reslponse of a shell1
cylitdical sheoll and. tMi! is toeanimt die- %tste the odulus a o lsiisiy ort shle tithe

A s ent iPig s ii Chalf oe val far shd
-* plcomaet-to-radiu rtatio for &Wd platos. Vot rs t of the stucture. he thickness-to-

*nOfl v h.% 'it-vapld (rife %I andl i. 'hW isnAes ta4Als rastih is 1h14*0.61 for tie. cylindricl
asociated with V (1*) are ptw tortioal shell WWd hiais.2 tote h d piest. Pigs.
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lOa-10b show the n=0 response, and Figs. 2. A. Harari, "Wave Propagation in a
lOc-10d show the n=2 response. Cylindrical Shell with Finite Regions of

Structural Discontinuity," J. Acoust.
CONCLUSIONS Soc. Am., Vol. 62, No. 5, Nov. 1977.

The dynamic response of a long
cylindrical shell with end plates was found.
The vibrational mode shapes for uniform and 3. A. Harari and M. L. Baton, "Analysis for

non-uniform shells are presented. Thickness the Dynamic Response of Stiffened

and material non-uniformity were considered. Shells," Journal of Applied Mechanics,
The information obtained here can be used to Dec. 1973.

control the vibration level at frequency bands
of interest by introducing constrained layered
end plates, constrained layered shell 4. J. L. Sanders, "An Improved First
sections, material with damping properties, or Approximation Theory for Thin Shells,"
by stiffening several sections of the NASA-TR-R24, 1959.
structure.
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VIBRATION AND ACOUSTIC RADIATION

FROM POINT EXCITED SPHERICAL SHELLS

Edmond H. Wong, Code 5 134
Naval Ocean Systems Center

San Diego, CA 92352

and

Sabih 1. Hayek
The Pennsylvania State University

University Park, PA 16802

SUMMARY

The vibration and acoustic nearfield of thin aluminum spherical shells were investigated
analytically and expenimentally. Two such shells with thickness-to-radius ratios of 6.4 X 10-3
and 13.4 X 1 O -3 were excited by an impedance head at the apex, simulating a mechanical
point excitation. The driving point admittance frequency spectra of the shells when excited
in air wvere recorded and at each maximum, the mode shape at resonance was plotted. These
Measurements were repeated when the shell was suspended in a large water tank. The driving
point admittance of the submerged shells was recorded. The mode shapes at resonance were
plotted by use of a small hydrophone that measured the nearfield pressure of the vibrating
shells, The measurements were carried to high frequencies (ka ft 30).

A parallel analytic prediction of the amplitude of the vibration, the nearfield and far-
field pressures were made. Basically, a thin shell theory with bending terms was adapted for
the equations of miotion. For vibration in air or In vitcuo, the solution was obtained by the
normal mode approach. The predicted resonances were compared to the measured ones and
found to agree within $ percent for mode orders up to 32. For vibration of a submerged shell,
anl Iterative technique was used to calculate thle resonances of the submerged shells in water.
The predicted resonances were also found to agree within 6 percent with the measurements.

To predict the mnti-nline of the driving point admiltnce, use of Skudrzyk's meanl-line
theorem was made. This theory requires the knowledge of the resonance density of
vibrating spherical shells. Expressions for the resonance density of spherical shells were
developed lin the low, invdium, anJ high frequeancy ranges. Thea predicted mean-line0 of thle
driving point admit tance vibrating shell was within 3 dB of the measured mean-linea.

INTRODUCTION elustic scatterers Is the result of the rigid body scattering and
radiation scattering, In another paper 161, he studied thle

The study of lte vibration of a spherical shell sub- sane configuration but excited by a point force, where
nmerged lin an Infinite acoustic fluid medium Is thle iain lie dontonstrated lte radiation loading ont 4n elastic shell.

*objective of this papter. where tire telanical and acoustical Hlayek 17) 4tudied thre vibration of the forced, axisymnintric
ctvrliei are coupled by a fluid reaction Il11. The vibration sphorical shell In lte light of lte bonding theory lin an
-o~f a spherical shell has been studied by nmany authors acoustic mnedium,. lit! concluded that the resonance frequency

* I2-91. In A paper "On tire Vibrations of a Spherical Shell." Is sensitive to the pafrater (h,'a), especially for large mode
U rnit) 12) has invesigapted a memtbrane spherical shell for numbers n. and thle reonlance frequency Increases as nt In-
askililictric vibration. arid pointed out tile existence of Crease$, no nmatter how small Is the ratio (hh). Lauchle [C)

* two inifiiteo sts of nrtrnal modes. Baker 131 has expantded extertdud the work of Junifer, and demonstrated the Inter.
lte work given by Wilti; aitd demonstrated experimentally action of a spherical acoustic wave with an elastic spherical
ltre mtsrerte of normial itodes ptedictod by the theory. shel's to fluid nmedia, Skttdrjtyk 191 has de% eloped opproxi-

*Kaini 141 itudied ltea bendingi effectrs on Ilhe vibration of Inata expressions for tlia resonlatces of a spherical 4hell and
a spherical shell lin vacuum, and labeled Ilie lower branch as now 4Apressions for tire forcd vibration amplitudes,
benrding mnodes, Wilkinson I $ shidowed that thtere are threeo
branchies in tite frequency spoctruartl when thle tquilons or

* nuolln tort tlosd sfdrerical %heeh Include lte offcas of trans TilU EQUJTIONSOFMOYTI0N
verse *hear det'orrrrtion and rotatory tInrrla.

N~I 0 1.114 ct11iote dynsamrical response of air excited
Coirsideilite vihietilon oh t spherical shell sultnerged olastic shlell. i1 conidered where the applied fores, lte

li a fluid nredlwrr. Jonger IlIl eikurined the sound scatter- disphaceinenis, ce., are tiirtedepenrtent. To derive lte equa-
ll. of ii flrellibt~re ela~tic %itirericahsl, 011.im"1Cie by a plare tinls ofl ooion for a vibtrating shell. Htamilton's valiational
acu~tWstr wave, lie Qtonclude~d that lte scat tering fiel of all inhciple i applied, The variational nVIrstp lfut quiexpries.
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sions for the kinetic energy T and the strain energy V of 0 dP (iq)
the system as well as the external forces as derived from a U(77) I Und(1i- ) ,
potential function Q. Hamilton's principle states that: n=O

t2 (9)

t20
8f (TZ- V + Q) dt -- 0, (1)) W P (
t I n=O

where tI and t2 are the initial and final time states, respective- and
ly, of the system. The symbol 8 represents differential
variation. Substituting the strain and kinetic energies and the 00 00
potential function into Equation (1) one obtains the coupled Pi Pin Pn 1) , Pr =  Pm Pn 0 (10)
equations of motion of a spherical shell in terms of time n= n0
harmonic displacements U and W , see Figure 1:

LuuU + LuwW (0 2 &2) a (2) Then, on substitution of these two equations into Equa-
tions (2) and (3), one obtains two algebraic equations in

and terms of Un and Wn:

LwuU+LwwW=( =0-2),-12W - -L a2 (Pt+Pr), (3) (1-v2)n2-(l +)[)En-(l -]) UnEh (Pi+ Pr), 1(01)

where the operators Luu, Luw, Lwu, Lww are given by: + 0t3CX-(l -v) + (I + V)Wn 0

_u = -n +2)( I , d 2 2 )'A (2 . an dn ,2 - ), (4) 0)( ( --)(I + -Xn21 Un+ 10 Xna

Lw (-2)V[( -_V) Un-_(I + p) r + p '21 V ,I(S) - (- n+ 2(I +v)-(I-v2 i2 n

(lw 0 0 d-'0 n wit

L ,u wl -(l+ l (1.2)V p2 da2(Pn+Prn) , (12)

where Xn u n(n + 1), Pin and Prn represent the modal
(I -720 (6) applied and reactive pressures, respectively.

and

Lww wp 4  -pIV)V2 +2(l+ ) , (7)

where S(r 0 0,0)

92 , d ( 12) d . C R(r,0,0)

n2 , S 2a2/E; is -lthe normalized frequency, 110

Wr -Lb Is the ring frequency

Cbm] ,j3*(h 21a2 )112, (8) Ii o

and P It the Poluon's ratio, E Is the Young's modulus, a Is "/
lhe radius of the shell, U and W are the langentlal and
radial dlsplacement, Pt Is the applied rtdal frce, and PT Is
the aoustio surface pressre.

For this problem, the tangential and radial displace. x

nents can bc expreued In term of Legendt. polynomal of Fit, I - Configuration of tile spherical shell In ihe
dogree i as follows, spherial coordinate systwn

18



NATURAL FREQUENCIES IN VACUO AND IN FLUID. as thin shells for shell theory of deformation, but will be re-
ferred to as "thick" and "thin" shell, respectiN cly. It is clear

The natural frequencies of a free vibration in vacuo are that the natural frequencies of the lower branch for membrane
the rootsof the following equations: theory, 0 = 0, are independent of the shell's thickness, while

the natural frequencies of bending modes, for 0 > 0, vary
(I - V2)2 n4 _ (0 Xn2 + (I + 3v) ),n + (1 + 3v) with the thickness. However, the upper branch frequencies

do not change significantly with P. For a thin shell, where the

2+X 3 -4X 2 ratio h/a is very small such as the ratio 0.0064 shown in
- (1n- v)] (1 - v2 ) 2+ Xn - Xn + [0(5- ,2) Figure 2, the membrane theory may be applicable at low

frequencies or for small values of the mode number. It is

+ (I - v2 )] Xn - 2(1 + g) (I - v2 ) = 0 (13) interesting to note that n approaches unity when the
mode number goes to infinity for P = 0. Different asymp-
totic approximations to the roots of Equation (13) were

This is a quadratic equation in E22 with only two distinct obtained as follows:
positive roots for each mode number n. The larger root of
each mode belongs to the upper branch, and denoted by X -2

Sh The smaller root, flQ, belongs to the lower branch. The Q2 n , fl<1 , (14a)
roots 92hn and nin are the natural frequencies of the 2n + 1 + 3 S

spherical shell. For n = 0, there is only one positive real
root:

22 °  2 
2 n2

ho- 1-y gn - + I ax > (14b)

This frequency represents purely radial motion, which is re- and
ferred to as the "breathing mode." This mode's elastic energy )n+ I + 3v
is due to extensional deformation only because the shell 2 n
vibrates only In the radial direction, and the radius of curva- hn 1 - P2 ' 0 (14c)

ture of the shell remains constant. The natural frequencies of
dura!umin shells of radius a = 8 inches and thickness h - 0.1069 For a thick shell (h = 0.1069") or thin shell (h 0.0514"),
inch (h/a =0.0134) and h = 0.0514 inch (h/a = 0,0064) were Equations (14b) and (14c) predict the natural frequencies
computed and plotted in Figure 2. Both shells are considered with 10% accuracy for n >' 6 for the lower branch and

n > 3 for the upper branch, These approximations are
better tha-n those given by Felt ait Junger 110) which
oliminat-i the unity in Equation (14b). The unity in the
formula for the lower branch represents the membrane
energy and the first term represents the bending energy.
Thus, neglecting this factor, the 10% accuracy can only be
obtained for n N 20 for the lower branch. If n is large

W~et enough, the unity can be neglected and the shell resonances
approach those of a plate of equivalent surface, i.e., the shell

..... A^r~oiat~ resonances fall in the so-called "plate range," where the
.e r icurvature effects are no lomger important. When 'l < I,
rope, arsfeh the lower branch roots given by Equation (14a) are within

5% for n 4 10. These frequencies are shown In Figure 2.

a The modal mechanicai Impedance of a spherical shell
e,, i,.. for a radially applied force can be obtained by wetting

06Prn a0 in Eq. (12). The inechanial Impedance is

.. ll. p in * - iEh nzai , __f (15)

Nn- -u(1&,)2 n4 . )n2 + (I

out WINe + +310- -I00 +10))0 2 + p3.-

F~ig 2 . I)lninionle+% ifequency It for variou s 12(od(
welu spirical hels are ecited iII vacuo + 100 P2) + (I - j,2)1 2(1 + p) (I - 1.2),
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and with Sn =n (Un/Wn) 2 + I and M is the total mass of the

shell. For a freely vibrating shell in an acoustic medium, let
Dn ( + ) Xn + ( -v) (I +)+(l -v 2)2 2  qn = An exp (-On), with the natural frequency of the

submerged shell being w n, in Equation (17), which results in a

When 3 = 0, Zmn reduces to the modal mechanical im- an expression for w n as:

pedance of a membrane shell [8]. The modal ratio of the
tangential to radial displacement amplitude Un/Wn is ob- 2 2
tained from Equation (1I) as follows: n 2  n = (20)

n Man 1 +MR (0

Un = [ [n - (1 -V)] +(1 +v) n

2 2' (16)
n (I + t) RN - (I - VA - (I - P2) S2 where wn is the natural frequency in vacuo, and the factor,

MR = Man/1Sn, represents the ratio of the additional fluid
which depends on the excitation frequency a. virtual mass to the unloaded shell modal mass.

To obtain the resonances of a shell submerged in a fluid, It is evident from Equation (20) that the resonant fre-
one can write the equations of motion in terms of generalized quency of a submerged shell is affected by the virtual mass,
coordinates. The displacements u and w are expressed in Man, and the modal mass, Mn = Sn. In other words, it is
terms of generalized coordinates as follows: determined by the mass loading factor, MR. The virtual

jmass, which is a function of the frequency, adds to the inertia
u n (0) qn (t) of the shell. The contribution of this mass to the total mass

of the system depends on the acoustic characteristic im-
and pedance pc. The modal normalized acoustic resistance,

, q (t)ran/pC, and reactance, Man/pa, are computed from Equa-
.Wn(0) qn (t) ,lion (18) and plotted In Figures 3 and 4, vs the nondimen-

slonal frequency ka , respectively. The modal reactance
where On and Wn are the mode shapes of the tangential and increases with frequency and then decreases rapidly toward
the radial component of the displacement and qn(t) are the zero as the frequency Increases. It means that the virtual
generalized coordinates, mass is low at high frequencies. The normalized modal

acoustic resistance Increases from zero to peak value before
The equation of motion on the generalized coordinates It roaches its asymptotic value of unity for high frequencies.

becomes:

K ron

ASH, P _

MS~ ~
+ an)(Tan

whereo K repreents the damping factor, roan hal a art, "
the r~esistive and reactive com.ponents of tile modal acoustic .*

hnpedunce Zan

Zan N11 ).U aMn ( 18)

#j ii the surlface Imam$ dentity and ! 4 is a Whupo factor which

aPO In like modal ila"t MnJ: 0,0 nL i 11 1. D 18. o

Si n + 1 s. . (19) [, .3 -
*1 

VA

-l ___.
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The natural frequencies of a submerged shell are 0. 2. 4. i. 10. It. 14. .I . . 22. 24.
obtained from Equation (20) by use of an iteration tech- ME NUuM16
nique, since the natural frequencies in vacuo, wn, are already
known. These are plotted in Figures 5 and 6 for the upper Fig s 6 - Di erinsonless frequency a for various modes.
and lower branches. It is evident that the submerged shell Comparison of spherical shells In water with that in air
natural frequencies of the lower branch are lower than these
for a shell in vacuo (or in air). For the light fluid (air) load-
ing. the mass loading factor. MR. Is negligible and hence the increases up to four times the mass of the shell for tite mode

A resonances In air are very close to those In vacuo. For the shapes of the primarily radial modes of the lower branch
heavy fluid (water) loading, the mass loading factor. MR. (Un/Wn) 4 1 (strong fluid coupling) except that (Un/Wn)

= I (fl I m 0) for the first mode, Thus, the natural frequen-
cles in water are reduced significantly for the lower branch
at low mode numbers. However. when MR decreases to less

"- than unity for high mode orders of the lower branci, (higher
frequencies), the natural frequencies In water are slightly
dereased from those in air. For the mode shapes of the

,O" upper branch, which are primarily tangential (Un/W n) < I
u v r, (weak fluid coupling), the virtual man of the accelerated

fluid Is negligible.

THE RESONANCE DENSITY OF SPHERICAL SHELLS
AND THE MEAN INE OF THE DRIVING POINT
ADMITTANCE

Lewe 1 6r .0 In order to obtain an approximation of the shell's
Low#? kre " , characteristic admittance, a study of the spherical shell's

4 ~ ~ reowalaae density I i~ mcsary. The rotomwosc donwity III
.5l iis defined

dd
a. 4. d. 3. . 4 IL at. .0. *2. 244

I ig. 5 Ifiaa~in~ req4licmy 11 for valut idk-
wh_11 %phorical %hell Uri vXV11e In water where W is the rewant angular frequency ad Cb m (U Ip0
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By differentiating Equation (13) with respect to mode number expected that the maximum poi, t of the resonance density
n, the resonance deasity is expressed as: is closer to unity as the thickness of the shell decreases and

that the peak becomes higher (see Figures 7 and 8). For
2  frequencies above 42 = 1, the resonance density decreases

dn 4 0 - ) 2 - 2cn slowly with frequency.d"- -" (22)
an22 - bn

where 100

an (2n+1)(l+ +2PO ) 1 00(2)

(n + 1) [3PN - 8P n + P(O - P2 + (I -2)0()

bn =V 2

and

en I +3- 3(l -v)+n(l + ,)+OX2  W

At low frenuencies or in the membrane range a < I the
parameters in Equation (22) can be approximated as
follows: X

a. *  (2n+l) , (1)

bn s (2n+ 1)

and 1 .,.* .....0.1I 1 10

Cn a (I + 3v+;Xn) . (23) FREQUENCY PARAI4ETER (i;)

Then. Equation (23) with n and X. substituted for Fig, 7 - Resonance density of a spherical shell, 1 -0.0514",
Equation (14a) can be expressed approximately as: In vacuo

dn 2/7 n <l, (24)
01l (1 - n12) "

which Is Independent of the shell thickness, because it is for 10

the membranu range. In the membrane range, the resonance
density Increases as S2 increases (see Equation (24)). The 1i(3)
resonance density reaches a maximum (we Equations (22)
and (23)1 when 91 is given by:

, 2  -' . (25) M

Thus, the maximum resonance density Is given by:

dn 0,4331PVI

It i% quite clear that, In genetal, the maximum point Is not at
W l * I except for a membrane shell, when 0 w 0. Due to

Introduction of the term A ' , the maximum occurs at
n > I. Actually, the resonance density Is an invers slope
of the frequency curves shown in Plgure 6..

0.1 . t ol

Thick shells' natural frequencies differ from the mere- . . v pAMRA.TE (V)
brane mode at a hlgher frequency than thin &hells. lie take.
off point from the membrane curve In Figure 6 Is the Visi. B Res'mae densty or a sspherical shel, h 0.10in"o "
maximum point of the nonN densty. Thorefore, it Is in 1,4U0
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At high frequencies, S2 > I when the resonances Reference 11). Thus.
approach the plate range, it is convenient to use the asymip-
totic form. By differentiating Equation (14b), the resonance = 2(n + 1)
density for a spherical shell becomes: Ynh-,< 1, (30)

dn I(I 2)V8I 
2 p~ 3-P2) A,2

dI 2 where Ani (wn+1 - 'n) / Wr

for n1>l , (26a) and *4  Eh2

12ps (1 -
2)

and, in the plate range, becomes:

dn . for a , i (26b)dg

with a maximum value given by: 1thick sht-I 1
dn 0.3/A,d 0 (26c) . . thin shell I

Figures 7 and 8 show the resonance density of the two
spherical shells in vacuo. Curves (1), (1), (3), and (4) repre- 14

sent, respectively, the resonance dersity for the exact S
(Equation (22)1, the low frequency approximation (Equa-
tion (24)], the Jensity for midrange frequencies' approxima- 91
tion [Equation (26a)], and the high frequency plate range
(Equation (26b)], The maximum point in the resonance 4
density ,pectrum separates the resonances into membrane
range and plate range, Resonances between those two
ranges &re In the so-called "coupling range." The segment of dCurve (I) for n > 1.5 matches with that of Curve (4) for the
plate range, and Curve (3) matches Curve (1) down to 11 ow I
Curve (2)matches with Curve (1) up to 11 = 1.0. In the
membrane range, both shells have tltw same resonanme density
(see Equation (24)1. The higher resonance density of the
th n shell implies that It has a higher response when one con- d
slders the driving point admittance (OPA) because the meano ' ' .
value of the [PA [I I is: PFIOUEMCY PMA*A inf (')

ff Fig. 9 Moan value of tile driving point adimittance of
Ye 2En  (27) spherical shells hi vacuo

where Mn is tie modal mass of the spherical shell (Equa-
tion (19il, Figure 9 shows the mean value of the DPA of the
shells, For 11 > l-, THE POINT EXCITED VIBRATION OF A SHELL

The response of a point excited shell fi at acoustic

I P I.2 4 medlun Is analyzed in this aection. The fluid pressure Irn in
C a * - ) (28) Equation (12) Is no longer assumed to be zero. Since the
¥€ " 4Ct ~ in I---- () radiated acoustic pressure Prl is an outgoing wave, it can he

$12J expressed In telms of the splerical lankel function of irst

dkd ad orerat n.. Therefore,
Und

ve t (8*2 pshi'I for n' D"1 (29) Pr(r( 11 .., L"5|hn (A)h(ka) I ) P(5)
n,,O

When i < I , 1n hs Etqation (7) 1s replaced by ,w be. (i)
cause the .loil doe0s nt have many modes In tile membrane
range and ale. a 3 di I. added to Iquation (28) duo to tho 1 zan I I (ka)) *n Pit (q).
agtinaty part of the oWn value of thie DPA ( he)
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where Zan -iPc [hn (ka)/hn' (ka)] is defined as the acoustic where Zmn -rmn + iMmn and Zan- ran - iwMan, for
radiation impedance. mode number n = 0, 1, 2.

The radial velocity is expressed in terms of the applied NUMERICAL RESULTS
force and the total impedance of the shell by

Calculations are made for two different duralumin
Wn =Pin/Zn 1(32) spherical shells when submerged in air and water. The physi-

cal properties of the shell material, fluid, and the dimensions
where Zn is the modal impedance of a submerged shel, of the shells are listed in Table 1.

The driving point admittance and the response pressure
field are examined first. Consider a unit concentrated force TABLE I
which can be described by: PHYSICAL PROPERTIES OF A DURALUMIN

SPHERICAL SHELL AND ACOUSTIC MEDIA

(l/mra) ~Thickness (h) 0.0 5 14", 0. 1069"
(2n lP 0O Radius (a) 8

n0Young's Modulus (E) 1.037 X 107 psi
V 0Poisson's Ratio (P') 0.335

(in33)n Mass Density of the Shell (ps) 2.649 X 10-4 lb. sec. 2!in.4
Pi Pt(1)Mass Density of Air (p) 1.15S X 10-7 lb. sec. 2/in.4

n=0 Mass Density of Water (p) 9.645 X 10-5 lb. sec./in. 4

Velocity of Sound in Air (c) l.3S6 X 104 in./soc.
From Equation (32). the modal velocity of the shell in an Velocity of Sound In Water (c) 6 X 104 in./see.
acoustic medium is given by: (ia)ait 14.59 X U2

2n~l(ka)water 330 X 10-2 X n2
2n +- 1 (34) (P')water 5.79 lb. sec./in. 3

n 4ra2 Zn (Pc)air 1.56 X 10-3 lb, sec./ln. 3

The radial velocity of the submerged shell Is given: The frequency spectra of the driving point admittance
(DPA) for point excited spherical shells were calculated

2 with structural damping factor 6 X 10 4 (except 6 X 10-3
W- (2n + 1) Pn. (q)I(4:2Zn) .(35) lin Figures I I And 12) for duralumin. For vibraition lin air,
nizo the normalized acoustic resistance at the resonance frequency

of each mode was found to be dominant. Onl the other hand,
lThe driin po. amtac(DA sdfnd asterto when the shell is vibrating In water, the structural damping

of the radial velocity of the shell to the applied, force at that was found to be dominant because the normialized modal
particular point. Ihe DPA Is obtained directly by setting . acoustic resistance was negligible at the resonance frequency
tE w I (Pi (D) I I In Equations (33) and (3S) and taking the of each mode.

* . ratio,
'Me amplitude of the normalized [WA for the two

2n + I . duralumin shells tested ware computed and plotted In

O n Figures 10 to 14. 'The DPA4 was normalized to that for a
(36) point driven Infinite plate having the same thickness, ats

4w&2 given In Eq. (29). The low frequency behavior Is dominated
by the mass of the shell. 1tus, for the non-normalized UPA,

- .Filially, %ubitituting Equation (34) for WR into EquAtIon1 (3 1). the thin shell should be approximately 6 dS higher. However,

lte prtmuwro field of a submergled shell Is, when one normtalze-s with DPA of a plate with the sonme
thickness. the normalization Is proportional to h-2 . so

~ ~ h~~ki')that the normalization cauises a 12 d8 increase In the DPA
4d(4 4 On + 0 P~ ita (0)., (37) of a thick shell, so lte net change of the nornialIxed adit'l

4*2Zn =h k)lance Is 6 d! Increase for fte thick shell. Thew tinlmntn
response ror frequencies lest thaon lte first resonance cur-

4 ~~At resonancee. the imaginary part of the total Impedance . responlds to lte first alt-eoatebetween the rigid body
Zn Is equal to zero. Thlen, Zn reduces to the sumn of the In- frequency (11I1 0) and lte first reonanice (11 1). Thus,

4tornal damping rsn of the shell and the acoustic re"stance for frqueciesvi below thle firt anti-resonance, thle moti11on
r an, where ran wReal Ilpchn(ka)/hn(ka)I . The niodal Im. at lte conter of gravity of lte freely suspeilde shell is

oelae of a submerged Lhell Is expressd convedniety, as. governed by a termn V0  1 /20 a lcst, whore Mt Isthle
total mass of thle shell. 'liwzleford, thle slope of tile respons

Zt, (W) MZan + ml is 6 dli per octave, For classical shellte resonance* are
welt-spaced, and lte resonant response shows ditinct peak%

1011+ to~w))+ '[mh~w W~a~whin Figures 10, 11, and 12, which Is riot evIdeont for thle
('to ~ 'n~"~ ~ I~as~w) 0Na(Wnlattinbiae theory.
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an infinite plate. Tie result is shown in Figure 12 when the
line MN in tile resonant spectrum is the predicted mean value
computed by Equation (27). The resonant mean value is in
excellent agreement with the line MN , but the predicted

1i -mean value in the first few modes of the membrane range
fails to agree. This is because there are so few resonances in
the membrane range.

Thle mean value method can also be used to predict
the mean value of the DPA of a shell in water. Ho% ever, it

Uhas to overcome the difficulty due to tile introduction of
the virtual mass in the equation of motion. At vcry high
frequencies, the mean value of the DPA of a sOhn.crged
shell again approaches the unloaded infinite plate value.

GENERAL EXPERIMENTAL APPROACH

ki
T The resonance frequency measurements were performed

for both 14-gauge (actual thickness h = 0.05 14 inch) and
8-gatige (actual thickness h = 0.1069 inch) thick spherical
shells. The directivity pattern measurements were takvn on

9 ,--the 8-gauge shell. Each of these shells Is 16 inches in diameter
T 't el . IL' t. oa t0. ca o- . no and is constructed of duralumiln material. Tie spherical shells

DluIVStONLtSS FREQUENCY (CA) wcrc fabricated from two hemispherical shells welded at the~equator and the wvels ground smooth,
Fig. 14 - DPA of a classical shell with thickness

h 0.1069" In water The experinental measurements were carried out In the
ancchoic chamber at the Water Tunnel Building and tht an.

For vibration In water, the shell exhibits a similar be. echoic witer tank at lte Applied Science Buildinlg of the
havior In tile low frequency range, except that th DPA Is Peinnsylvanla State University. The anechoic chamber was
much Ibwer In water than In air. This Is explained by tlte built initially ill support of this experintental program to it.
fact that the virtual mass of the displaced aucoustic medium at vestigate the fluid loading effects oil elastic structures. It
low ftrquencios Is noglitlible itn air when compared to tie mass hni Internal dimensions of I I X 12 X IS ft. The sound
of tile shell but Is much highter than the mass of the ihlell vi. absorbing walls are composed primarily of rock.wool f1her.
brating In water, TIus. since the admittanceheol first glas Isulation. air voids. and wood frame inetmbers. it Is
resonance Is I /wM, Ni being the total mass being vibrated, tie considered as a sem-ianvectoic for frequncies less th.is I kHz
admittance in air Is much higher than that it water, However, and mnoderately ane0oic for higher frequencies, The water-
lte adittance of the shell at resonances is lower in air than filled atecholc tank, which is ! feet long. 4 feet wile, nd

in water because of the previously explained behavior of the I I foet deep, Is lined with lnoslhrete wedges. ietween 20
modal admittances. In air and in water, and 30 k}l|, the tank Is better than 90 percent absorbent,

The absorption falls off rapidly below 20 kLtA. The sphorleal
The minimum point In Figures 10 through 14 will .shit shells wee located near the. eenlef of the tank or the chamlber.

due to the position of the first rvionanv,, The politill of the Tme soufe 401d recever were plaued il a Iorltonta!.plane
first reonance of lte shell in, air it lte sante for all shell thick. through thle ceniter of lte shell perpendicular to the wullb of
nerves. to that the anti-resonance doe! not sltlftl, Hlowever tile tank or the chantber,
the first roonance of the shells suhmerud In water is alnost.
one-tenth of that in alr, Wo that lte .ocation of tie at . The resoiattees 0f slhertil shlls were measured by
resance shifts doaw accordingly. 0l0otih?2 the frqutcItey respone and the 1lal pattern, A

colltilttu'lt sitlloldut wave vmil aplidd to lte shakof to

In vacuo or air, the nliaii value of the I)PA for a shll 00 ike the shell ti both water and air. A sWhmati dia rwi
will apprual aymnptotlcatl- thie value of the lolvdautw o oi the (Ot et.stp it dsown In Figure IS.
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DAMPING OF SHALLOW-BURIED STRUCTURES

DUE TO SOIL-STRUCTURE INTERACTION

Felix S. Wong and Paul Weidlinger
Weidlinger Associates

Menlo Park, California and New York, New York

Damping of the motion of buried structures is derived based on the mechanics of
dynamic soil-structure interaction. The interplay between the structural motion
and the soil loading on the structure results directly in the damping of the struc-
tural motion. The derivation is illustrated by an example of a horizontal slab
embedded in an elastic soil medium.

INTRODUCTION of dynamic soil-structure interaction. As
stress waves in the soil strike a soil-struc-

It is the current practice to obtain hard- ture interface, they give rise to scattered and
ness levels of shallow-buried structures fror transmitted waves. The transmitted waves impart
analyses using an undamped SDOF elastic-plastic particle velocities to the structure; motion of
model. Results of recent anO past tests on bur- the structure imparts rarefaction waves to the
ied structures have shown tht these analyses soil, and loading exerted by the soil on the
underpredict the lethal overpressure; a number structure is lessened or relieved. This pheno-
of fully-buried structures have retained their menon, referred to as dynamic soil-structure
protective capability at airblast overpressures interaction, is seen to lead to the high damp-
higher than their predicted collapse load [1,21. ing in structural motion.
This is Illustrated in Fig. 1 which is taken
from [1]. The undamped SDOF calculation results The scope of the work is limited to elas-
shown in the figure use currently accepted pro- %ic soil-structure cnfigurations In order to
cedures for modifying the period to account for clarify the origin of the damping due to soil-
soil coverg calculation for the roof load in- structure interaction. The actual interaction
eludes attenuation of the overpressure with process is, of course, much more complex and
depth, but no damping and soil-structure inter- involves inelastic properties of the soil and
action effects. nonlinear interface conditions. Analytical

solutions are difficult to obtain and numerical
In an attempt to explain the apparent over- methods must be used. However, the basic maeh-

conservatism in current methods, Rigre and Bll- anise. of reflection of the soil stress waves
sara (2] retained the SDOF approachbut suggested at the soil-structure Interface, the relief of
that a high dumping ratio should be used to ac- ti interface load due to motion of the struc-
count for energy loss. (The load..-deflection ture away from the soil, end the resultant
relationship obtained from static tests of the damping in the structural motion remin the
same soil-structure configuration was also used sase as those illustrated herein.
to account for "Arching." They indicated that
--s 20 percent damped SOOP model could accurately
predict the permanent deflection of the roof ele- DYUMI4C SOIL-STitUCTUU INTERACT101

The coupling between loading and structur-
Tite iteed for higher damping was also sug- al response cat be illustrated by referring to

gestod by Windham III, and by tojcik and lien- Fit. 2 which ti a characteristic diagram of one-
berg 14). Tt latter attributed the damping -to dimensional elastic wave interaction between a
the radiatton of energy away from the structure. be layer of soil and a concrete slab .Sathick.
Elastic finite element inalyes were conducted Uhen the incident compressive wave first rea-.
and damping was assessed by the log decrant of ches the soil-concrete interface (point A), it
peak displacement in successive cycles, ts reflected as wel& as transmitted. In this

example, about 802 of It is reflected and 1801
An Analytical derivation of damping for transmitted according to the following equa-

this class of buried structures is gtveo in this tio**a
paper. The derivation is based on the mechanism
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2pccc point A, 100 + 80 - 60 = 120 MPa at point B,
a T C (i) i00 + 80 - 60 - 50 - 70 MPa at point C and so

c c a s on. Hence, in two transit times across the
thickness of the concrete slab, the initial

- P c peak of 180 MPa has dropped to 120 MPa, in four

R  ccc + Psc o (2) transit times to 70 NPa and so on.

When the applied load is not a step but
where i, a are the incident, transmitted decays with time and has a finite duration, theitd V R decay of the interface stress depends on the
and reflected sLiess components, respectively; load duration. Some results for a triangular
Pccc is the acoustic impedance of concrete and pulse are given in Fig. 3. Two observations

p c that of soil; p is the mass density of the regarding the interface stress can be made. The
a ad initial amplification of the interface stressmaterial and c its dilatational wavespeed [5]. depends on the impedance ratio across the inter-

Hence for a 100 MPa incident wave, the trans- face. on thimp lficatio s hor-
Smitted wave is 180 MPa. The transmitted wave face. Secondly, this amplification is short-mittd wve s 10 Na, he ranmited avelived. In 2 to 4 transit times across the

is reflected at the free edge (point A') as a lonerete, to l ayer ie across the
tensile wave, denoted by a dotted line, of mag- concrete, the layer will have attained thevelo-
nitudecity that it should due to the action of the
face, the -360 MPa wave intrn is reflected interface stress and begin to move away from
fascmthess360ive wave inmagntu is 0 re td the soil. This motion generates rarefaction or
as a compressive wave of magnitude 300 relief waves into the soil, thus reliewing thetransmitted as a tensile wave of magnitude -61 laigo h oceelyr

MPa. The reverberation process within the loading on the concrete layer.
concrete continues as the wave goes from B to
B', from C to C', etc. This observation is elementary but crucial

to the understanding of soil-structure inter-
This multiple wave reflection/refraction action: SSI is intimately connected to motion

phenomenon is well-known. When the applied of the structure relative to soil. When struc-
incident wave has a constant magnitude of 100 tural motion is in the direction of (in phase
MPa, i.e. a stop load, the stress at the soil- with) the soil or free-field motion, it relieves
concrete interface is 100 + 80 x 180 MPa at the interface load. Similarly, when structural

, 250. ------- , - I ,
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motion is against (out-of-phase with) the soil OR = PCsUF -PcsZ (8)
motion, the interface load is enhanced.

and since
For one-dimensional situations, this ob-

servation can be summarized quite simply as fol- oF = PscsUF (9)
lows. From wave propagation results such as
those given in Fig. 2, the relief (or enhance- Eq. (4) may now be expressed as
ment) in interface stress, 5, due to motion of
the concrete layer, v, is given by ME + p c Z + KZ - 2 F . (10)

5 - -pcv (3) Eq. (10) expresses the response Z in terms

when v is positive in the direction of free- of F
F the free-field excitation. Since aF is

field wave propagation, and pc is the impedance independent of the response of the structure Z,
of soil noted earlier. Positive a means it is the problem of soil-structure interaction as
compressive, i.e. when motion is out-of-Rhase given by Eq. (10) is uncoupled; the free-field
with the free-field motion and negative a means excitation can be analyzed first and separately
it is tensile, i.e. when motion is in-phase with from the structural motion analysis which fol-
the free field. It will be shown that this lows. The effect of SSI il represented by a
simple representation of soil-structure inter- viscous damping term, Ps ca Z, which depends on
action leads to the damping in a class of bur- the properties of the medium. It is this damp-
ied structures where the SSI is basically ing which (a) incorporates the SSI effect on
planar. the loading perceived by the structure and (b)

effectively decouples the analysis of thestruc-
ture from its surrounding medium.

SSI AND STRUCTURAL DAMPING
The relationship expressed in Eqs. (6) and

The response Z of a structure buried in (9) is based on one-dimensional wave propagation
a medium subjected to a Rnown free-field excite- considerations. For two-dimensional problems
tion can be represented by with simple geometries such as rectangular plane

box structures, the relationship is an approxi-
MZ + KZ - (4) mation. The assumption that the reflection

process is (at least) initially plane has been
where H is the mass matrix, K the stiffness extensively tested by finite element models for
matrix, both of dimension N by N, N being the various span-depth ratios of the structure.
number of degrees of freedom. oI, a vector of The error involved in such applications is il-

lustrated in Fig. 4 where the SSl loadings on adimension N, represents the interaction pressure slab with a span of 6m obtained from two-dimen-

(unit tributary area Is implied) and can be writ- soa fite elemen ta ind f sin the
ton as sonal finite element analysis and using the*ten as

01 * + 0R (5) approximation Eq. (10) are compared.

where Fig. 5 compare the corresponding structure
Ris the reflected (or radiated) prs- motion time histories. The highly damped nature

our* at the interface, and o the free-field of the velocity response is apparent. Further-

excitation. more, by competing Figs. 4 and 5, the relief and
enhancement of the SS1 load corresponding to the

Assuin that the reflected pressure at phasing of the structure and soil motions are
-iarly time can be approximated by the planewave clearly Illustrated.

6J relationship Eq. (3), the reflected pressure
can be expressed as

NODAL DAMPING
0 *CU (6)

In moda analysis the goneralized.damping
where 08 is the mass density of the soil, c5 is ct in the ktn mode Is given by

its P-wava velocity and UTt he.refleated patti- T
@Ie velocity, t r

The reflected particle velocity can alao be whete k is the kth mode shape vector and the
written as superscript T indicates its transpose. Similar-

Uly, the generalized maes is given by
U- UT Z (12)

where UF is the free-field particle velocity and k'k

St h Oe velocity of the structure at the inter- end the kth damping ratio is

face. Combining Eq*. (6) and (7) gives
C( 1)

s* " .
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where w k is the kth modal frequency. class of problems to delineate the relationship
between dynamic SSI and damping of the struc-

Specializing to Eq. (10), the modal damp- tural motion. Damping is shown to be a direct
ing due to SS1 is result of the interaction mechanism.

PsCs 1 Damping comes also from other sources:
k = Pcdc 2wk (14) dissipation in the soil due to hysteresis, en-

ergy loss due to interface friction and damping

internal to the structure. By consideringelas-

since both the damping coefficient C = mCm and tic soil/structure configurations, we have

the mass of the roof structure with constant eliminated these sources in the present study

thickness dc and density pe, are constant. in order to concentrate on perhaps the largest

contributor to damping in protective structures,

Eq. (14) states that the modal damping due and to illustrate its origin.

to SSI effect is inversely proportional to the
modal frequency and unit mass of the structure,
but is directly proportional to the acoustic
impedance of the medium. Alternately, multiply-
ing and dividing the righthand side of Eq. (14) REFERENCES

by c c , the wavespeed of the roof material, [1] Kiger, S. A. and J. P. Balsara, "Results

gives of Recent Hardened Structures Research,"

the 100th Symposium on Weapons Effects on
PCs Cc Protective Structures, Mannheim, Germany,

Sk 0cc c  d c  2wk  (1 November 14-16, 1978.

Recalling wk x 2f/Tk, where Tk is the period of (21 Kiger, S. A., "Vulnerability of Shallow-
Smod, qBuried Structures," Defense NuclearAgency,

the kth mode, Eq. (15) becomes Strategic Structures Division Biennial Re-
Tview Conference, SRI International, Menlo

ss (k Park, CA, March 20-22, 1979.

tk '411 Pe T~ 1 31 Windham, J. E. and J. 0. Curtis, "Effect of

where T d /c is the transit time of the Backfill Properties and Airblast Variations
C C on the External Loads Delivered to Buried

roof. Hence, the modal damping due to SSI ef- Box Structures," Technical Report, U.S.
feet is proportional to the soil-structure Army Engineer Waterways Experiment Station,
impedance ratio and the ratio of modal period April 1977.
to transit time in the structure.

14) WoJelk, G. L. and J. Isenberg, "Effects of
Radiation Damping on Vibration of a Sh~l-

-- 1 low-Buried aretangular Structure," DNA

CONLUSIONS 4600F, Woidlinger Associates fot Defense
Nuclear Agency, April 1978.Dynamic Goil=litructure lfntar~etion for

buried strueturns 14 o complex plittotan. We 151 gol ky, It., Stress Waves in Solids, Dover.
have considered a simplified subset of thLis blicatioc, 1i6. "

184


